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This paper ...

[1] Provide data-generating-processes (DGPs) that are consistent
with Giacomini and White (2006, Econometrica)’s theoretical
framework

[2] Analyze finite-sample properties of Giacomini and White (GW,
hereafter)’s testing procedures for

1. Unconditional predictive ability

2. Conditional predictive ability

where forecasts are generated with

1. Fixed-window estimation scheme

2. Rolling-window estimation scheme
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In this discussion

I will talk about this paper in terms of ...

1. Relevance

2. Challenges

Then, I will list my comments on the paper
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Relevance

Among 50 regular articles published over the last year in the
International Journal of Forecasting:

I 25 papers perform statistical testing on equal-predictive-ability

I 20 papers report results based on Diebold-Mariano (DM)-type
statistic with

I Recursive-window estimation (11 papers)

I Rolling-window estimation (8 papers)

I Fixed-window estimation (1 paper)
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Challenges

Forecast target: yt+h

Two forecasts made at time t : f1,t and f2,t

Define a loss differential

dt+h = L(yt+h, f1,t) − L(yt+h, f2,t)

where L(y , f ) is a loss function

Consider two types of null hypotheses for equal predictive ability

E [dt+h] = 0 or E [dt+h|Ft ] = 0
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Challenges
Conditional predictive ability test:

E [dt+h|Ft ] = 0

GW’s theory is based on a specific form of Ft

They assume that f1,t and f2,t are measurable with respect to Ft

For 1-step-ahead prediction,
I (dt+1) becomes a martingale difference sequence (MDS)
I (dt+1zt) becomes a MDS where zt ∈ Ft

I Their asymptotic theory boils down to LLN/CLT for MDS

For h-step-ahead prediction, dt+h is serially correlated only up to
(h − 1) displacements
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Challenges
Is this assumption realistic?

Assume a quadratic loss function,

dt+1 = (yt+1 − f1,t)
2 − (yt+1 − f2,t)

2

Simple arrangement shows that GW’s null hypothesis holds when

E [yt+1|Ft ] =
1
2

(f1,t + f2,t)

For example, if f1,t is unbiased, then f2,t has to be unbiased.

It is hard to come up with such an example at least for me. But, the
author came up with such an example
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Challenges
Is this assumption realistic?

Assume a quadratic loss function,

dt+1 = (yt+1 − f1,t)
2 − (yt+1 − f2,t)

2

Simple arrangement shows that GW’s null hypothesis holds when

E [yt+1|Ft ] =
1
2

(f1,t + f2,t)

For example, if f1,t is unbiased, then f2,t has to be unbiased.

It is hard to come up with such an example at least for me. But, the
author came up with such an example

Victory!
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Comment 1: HAC-Bandwidth

Comment 1: If the paper was really about documenting a finite
sample properties of GW’s test procedures, then it is much more
natural to use a rectangular kernel rather than a Bartlett kernel to
estimate the long-run variance for “conditional” EPA test

I Giacomini and White (2006) emphasized this in the paper. “Use
HAC and truncate at (h − 1) for the conditional testing.”

I Also emphasized in Giacomini (2010)

Under the conditional null hypothesis, it is better because ...

I Smaller size distortion due to less biased LRV estimation
I More powerful if the alternative entails a serial correlation
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Comment 1: HAC-Bandwidth
Empirical distribution of actual sizes for all experiments considered in
the author’s paper (all 80 specifications), nominal size = 5%

I DM-NW (This paper) : Bartlett kernel with Newey and West’s automatic bandwidth rule
I DM-R (GW’s original rule) : Rectangular kernel truncated at (h − 1)
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Comment 2: On size distortion

Comment 2: Most of size distortions that we saw from the author’s
exercises can be eliminated by using different approaches

I Recent tools from HAR-inference literature: Fixed-b asymptotics,
t-statistic-based testing, randomization test using asymptotic
symmetry, etc

I Accurate estimation of the long-run variance may not be an issue
here (e.g., fixed-b asymptotics)
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Comment 2: On size distortion

I DM-NW: This paper
I DM-R: GW’s original rule
I DM-M: Harvey et al. (1997)
I DM-FB: Kiefer and Vogelsang (2005)
I DM-EWC: Muller (2004)
I DM-IM: Ibragimov and Muller (2010)
I DM-CNR: Canay, Romano, Shaikh (2017)
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Comment 3: Interesting property of the DGP

Comment 3: Conditional-Rolling DGP generates a very strong
conditional heteroscedasticity in the loss differential

12



Comment 3: Interesting property of the DGP

For example, R = 175; Rbar = 175; h = 3; with P = 1000000;

ACF of dt+h is MA(2) as expected
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Comment 3: Interesting property of the DGP
ACF of d2

t+h

Fitting MA(2)-GARCH(1,1) gives me the following estimates

ω = 0.00, β1 = 0.23, β2 = 0.81

where the GARCH equation is defined as

σ2
t = ω + β1e2

t−1 + β2σ
2
t−1
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Comment 4: My personal view about GW

Conditional EPA testing:

E [dt+h|Ft ] = 0

GW’s theory is based on a specific form of Ft

I For example, f1,t and f2,t are measurable with respect to Ft

I Theoretically convenient, more powerful test, etc.
I It makes sense if you want to know whether dt+h is predictable
I However, for this null to hold we have to impose a very strong

restrictions on f1,t and f2,t
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Comment 4: My personal view about GW

GW’s conditional testing also used for explanatory analysis:
I Is dt+1 statistically different from zero during recession?
I Is dt+1 is associated with some economic variables (zt )?

One could perform a test based on

dt+h = β0 + β1zt + εt+h

E [εt+h] = 0 and E [εt+h × zt ] = 0

Then, just test β0 = 0 and β1 = 0 with HAR inference WITHOUT
“truncation at (h-1)” admitting that εt+h can exhibit higher-order
serial correlation
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Conclusion

I This paper is very relevant for forecasters

I This paper attacks a challenging problem

I This paper offers several useful lessons for users of GW’s tests
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