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This talk is based on two papers

1. Macroeconomic Forecasting and Variable Ordering in Multivariate Stochastic
Volatility Models (joint with Jonas Arias and Juan Rubio-Ramirez), 2023, Journal
of Econometrics.

2. Inference Based on Time-Varying SVARs Identified with Sign Restrictions (joint
with Jonas Arias, Juan Rubio-Ramirez, and Dan Waggoner), 2024, Working
Paper.

How to place a prior on unknowns in time-varying VARs?
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A standard reduced-form vector autoregressions (VARs)

A reduced-form VAR model with n variables
and p lags:

y ′
t = x ′

tB + e′
t , et ∼ N(0,Σ).

▶ yt and et are n × 1 vectors
▶ xt = [1n×1, yt−1, yt−2, ..., yt−p]′, a 1 × (1 + np)

vector
▶ B is a n × (1 + np) matrix
▶ Σ is a n × n matrix

Prior:

B ∼ N(mB,VB)
Σ ∼ IW (SΣ, vΣ)
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Time-varying reduced-form VARs
A time-varying reduced-form VAR model,

y ′
t = x ′

tBt + e′
t , et ∼ N(0,Σt)

It is useful for both forecasting and structural analysis:
▶ Forecasting: West and Harrison (1997), Clark (2011), D’Agostino, Gambetti,

Giannone (2013), Koop and Korobilis (2013), ... and many others.
▶ Structural analysis: Primiceri (2005), Sims and Zha (2006), Baumeister and

Peersman (2013), Bognanni (2018), ... and many others.

Placing a prior on time-varying unknown objects like B1:T and Σ1:T is challenging.
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Roadmap for the rest of today’s talk

1. Begin with a standard prior specification for time-varying VARs.

2. Deviate from it and consider other alternatives (reduced-form VAR)

3. Extend these priors for a more general structural analysis (structural VAR)

4. Application: The recent monetary policy tightening cycle.
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[1] Priors for time-varying reduced-form VARs

Macroeconomic Forecasting and Variable Ordering in Multivariate Stochastic Volatility
Models (joint with Jonas Arias and Juan Rubio-Ramirez), 2023, Journal of
Econometrics.
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A popular Bayesian approach for time-varying VARs
Model: A time-varying reduced-form VAR

y ′
t = x ′

tBt + e′
t , et ∼ N(0,Σt), for t = 1, ...,T .

Prior: Primiceri (2005) develops a prior specification that models time-varying
parameters as a function of time, and imposes a Gaussian process prior,

vec(Bt) = vec(Bt−1) + νt , νt ∼ N(0,VB)

and
Σt = LtΩtL′

t

where Lt is lower triangular matrix (with ones on the diagonal) and Ωt is a diagonal
matrix with

vecl(Lt) = vecl(Lt−1) + ζt , ζt ∼ N(0,VC )
log(diag(Ωt)) = log(diag(Ωt−1)) + ηt , ηt ∼ N(0,VΩ)
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A simple example, 1

Consider a simple example with two variables—real GDP growth (∆yt) and the federal
funds rate (rt)—and without lags or constant (xt = 0):

Model:

∆yt = ey
t

rt = er
t

where [ey
t , er

t ]′ ∼ N(0,Σt)

Prior:

Σt =
(

1 0
ℓt 1

)(
σ2

y ,t 0
0 σ2

r ,t

)(
1 ℓt
0 1

)
log(σ2

y ,t) = log(σ2
y ,t−1) + ηy ,t

log(σ2
r ,t) = log(σ2

r ,t−1) + ηr ,t

ℓt = ℓt−1 + ζt

Cholesky factorization makes imposing a Gaussian process type prior easier, but ...

8



A simple example, 2

Cholesky factorization leads to a recursive structure

∆yt = σy ,tε
y
t

rt = ℓtσy ,tε
y
t + σr ,tε

r
t

where εy
t and εr

t are independent standard normal random variables.

Conditional predictive distribution conditional on σy ,t , σr ,t , ℓt is
▶ Normal distribution for ∆yt .
▶ Mixture of normal distributions for rt .

It introduces an asymmetry in the distributional assumptions.
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Does ordering matter in practice?

This is acknowledged by many others including Primiceri (2005).

However, it was less known how relevant it is in practice.
▶ Pseudo real-time out-of-sample forecasting evaluation

▶ 4-variable VAR with 2 lags in quarterly frequency,
▶ output growth (real GDP growth), inflation (core PCE inflation), 3-Month T-Bill,

unemployment rate

▶ Recursively estimate TV reduced-form VAR with Primiceri (2005)’s prior and
generate forecasts:
▶ evaluation sample runs from 1987Q2 to 2018Q4 (120 quarters)

▶ We do this for all 24 orderings and ranking them by various forecasting evaluation
metrics
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Density prediction evaluation

Log Predictive Score, One-Quarter-Ahead

Min Max Median

Output Growth -281.64 -274.42 -278.47
Inflation -113.90 -111.27 -111.96
3-Month T-Bill -28.81 -10.34 -14.83
Unemployment 21.12 30.25 27.09

Joint -381.08 -350.88 -359.67

▶ Min, Max, Median LPSs based on 24 orderings.
▶ The difference in terms of density prediction can be substantial.
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Alternative priors that are ordering invariant

Two classes of alternative priors that are “ordering invariant”

1. Model Σt based on Wishart(-like) distribution.
▶ A probabilistic model for transition from Σt−1 to Σt .
▶ For examples, West and Harrison (1997), Uhlig (1997), Prado and West (2010), Wu

and Koop (2023).

2. Factorize Σt in a different way. Then, use a similar Gaussian process prior.
▶ Σt = DtCtDt where Dt is a diagonal matrix and Ct is a correlation matrix.
▶ For example, Engle (2002), Asai and McAleer (2009).
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Random correlations VAR

Arias, Rubio-Ramirez, and Shin (2023) introduces a new class of models, random
correlations VAR (RC-VAR),

yt = Btxt−1 + et , et ∼ N(0,Σt)

Random correlations VAR:

Σt = DtCtDt

δt = 2 log(diag(Dt))
γt = G(Ct)

Prior:

vec(Bt) = vec(Bt−1) + νt , νt ∼ N(0,VB)
δt = δt−1 + ηt , ηt ∼ N(0,Vδ)
γt = γt−1 + ζt , ζt ∼ N(0,Vγ)

The mapping from Ct to γt is studied by Archakov and Hansen (2021).
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From correlation matrix to real vector

γ = vecl(log(C)) ∈ Rn(n−1)/2

where
▶ vecl() is the vectorization operator of the lower off-diagonal elements of the input

matrix.
▶ log(C) = V log(Λ)V ′ where C = V ΛV ′.

The mapping from C to γ is studied by Archakov and Hansen (2021).
▶ Each element in γ lies on the real line.
▶ Its inverse mapping exists.
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Density prediction evaluation, revisited

Log Predictive Score, One-quarter-ahead

Primiceri (2005)’s TV-VAR
Min Max Median RC-VAR

Joint -381.08 -350.88 -359.67 -362.05
Output Growth -281.64 -274.42 -278.47 -279.30
Inflation -113.90 -111.27 -111.96 -112.83
3-Month T-Bill -28.81 -10.34 -14.83 -12.20
Unemployment 21.12 30.25 27.09 25.41

▶ RC-VAR performs on par with the Median model.
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[2] Priors for time-varying structural VARs

Inference Based on Time-Varying SVARs Identified with Sign Restrictions (joint with
Jonas Arias, Juan Rubio-Ramirez, and Dan Waggoner), 2024, Working Paper.
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A class of models for structural analysis

A “structural” VAR model,

y ′
tA = x ′

tF + ε′
t , εt ∼ N(0, I)

where
▶ A and F are “structural” parameters
▶ εt is a vector of “structural” shocks
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A simple example: a structural VAR without time-variation

To fix ideas, consider a simple example with two variables—the federal funds rate (rt)
and real GDP growth (∆yt)—and without lags or constant (xt = 0):

rt = ψ∆yt + σMPεMP
t

∆yt = −αrt + σDεD
t

This can be written as,

[rt , ∆yt ]︸ ︷︷ ︸
y ′

t

( 1
σMP

α
σD

− ψ
σMP

1
σD

)
︸ ︷︷ ︸

A

= [εMP
t , εD

t ]︸ ︷︷ ︸
ε′

t
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A simple example with time-variation

The same model but with time-varying parameters

rt = ψt∆yt + σMP
t εMP

t

∆yt = −αtrt + σD
t ε

D
t

Then, the previous model becomes

[rt , ∆yt ]︸ ︷︷ ︸
y ′

t

 1
σMP

t

αt
σD

t

− ψt
σMP

t

1
σD

t


︸ ︷︷ ︸

At

= [εMP
t , εD

t ]︸ ︷︷ ︸
ε′

t
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A class of models for structural analysis

A time-varying “structural” VAR model,

y ′
tAt = x ′

tFt + ε′
t , εt ∼ N(0, I)

where
▶ At and Ft are “structural” parameters
▶ εt is a vector of “structural” shocks

Now, we face a similar challenge. How to specify prior over the time-varying structural
parameters, At and Ft for t = 1, ...,T?
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Observational equivalence

Following Rothenberg (1971), we say (At ,Ft)T
t=1 and (Ãt , F̃t)T

t=1 are observationally
equivalent if the likelihoods are equal for any (yt)T

t=1 ∈ RnT .

Proposition 1
The time-varying structural parameters (At ,Ft)T

t=1 and (Ãt , F̃t)T
t=1 are observationally

equivalent if and only if there exists orthogonal matrices (Qt)T
t=1 ∈ OT

n such that

(At ,Ft)T
t=1 = (ÃtQt , F̃tQt)T

t=1

A similar (but not identical) proposition can be found in Bognanni (2018)
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Rotation invariant condition and rotationally invariant prior

We say prior distribution for time-varying structural parameters, pS((At ,Ft)T
t=1),

satisfy rotation invariant condition if

pS((At ,Ft)T
t=1) = pS((AtQt ,FtQt)T

t=1),

for every sequence of orthogonal matrices (Qt)T
t=1 ∈ OT

n .

▶ We want our prior to treat observationally equivalent sequences of the structural
parameters equally.

▶ “A Bayesian analysis of a nonidentified model is always possible if a proper prior
on all the parameters is specified” (Poirier, 1998).
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How to construct such prior?
We first reparameterize our model.

▶ Proposition 1 implies that our SVAR can be written in terms of time-varying
orthogonal reduced-form parameters (Bt ,Σt ,Qt)T

t=1:

y ′
tAt = x ′

tFt + ε′
t ⇐⇒ y ′

t = x ′
tBt + ε′

tQt
′h(Σt)

where Σt = h(Σt)′h(Σt)

▶ There is a mapping from the structural to the orthogonal reduced-form
parameters:

fh((At ,Ft)T
t=1) =

(
Bt ,Σt ,Qt

)T
t=1

▶ Bt = FtA−1
t

▶ Σt = (AtA′
t)−1

▶ Qt = h((AtA′
t)−1)At
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Mapping between structural and orthogonal reduced-form parameters

(At ,Ft)T
t=1

Structural param

(Bt ,Σt ,Qt)T
t=1

Orthogonal Reduced-form param

fh((At ,Ft)T
t=1)
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Mapping between structural and orthogonal reduced-form parameters

Let pS be a prior density over the structural parameters induced by a prior density pOR
over the orthogonal reduced-form parameters (Bt ,Σt ,Qt)T

t=1

pS

(At ,Ft)T
t=1

pOR

(Bt ,Σt ,Qt)T
t=1

fh((At ,Ft)T
t=1)

25



Mapping between structural and orthogonal reduced-form parameters

Let pS be a prior density over the structural parameters induced by a prior density pOR
over the orthogonal reduced-form parameters (Bt ,Σt ,Qt)T

t=1

pS

Goal: Rotational invariance

pOR

p((Bt ,Σt ,Qt)T
t=1)) = ???

fh((At ,Ft)T
t=1)
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Proposition 2
The prior over the time-varying structural parameters satisfies the rotation invariance
condition if and only if the induced prior over the time-varying orthogonal reduced-form
parameters must be independent over (Bt ,Σt)T

t=1 and (Qt)T
t=1, and the induced prior

over (Qt)T
t=1 must be uniform with respect to the volume measure over OT

n

pS

Rotational invariant p((At ,Ft)T
t=1)

pOR

p((Bt ,Σt)T
t=1) × p((Qt)T

t=1)︸ ︷︷ ︸
Uniform

Proposition 2
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Operationalization via Proposition 2
Begin with a reduced-form time-varying VAR

y ′
t = x ′

tBt + et , et ∼ N(0,Σt)

Then, follow these steps:

1. Select prior on B1:T and Σ1:T .
▶ There are many alternatives for this as I introduced earlier. It does not have to be

ordering invariant.

2. Select prior on Q1:T .
▶ Our proposition tells us that we should use uniform prior over OT

n .

3. Convert p(B1:T ,Σ1:T )p(Q1:T ) to pS(A1:T ,F1:T ) using the mapping

(At ,Ft)T
t=1 = f −1

h

((
Bt ,Σt ,Qt

)T
t=1

)
28



Sign restrictions for sharper inference

For a given path, (A∗
t ,F ∗

t )T
t=1, the set of (At ,Ft)T

t=1 that has the same likelihood can
be very large.
▶ Economic theory sometimes helps reducing the set.

To sharpen inference, we impose time-varying sign restrictions.
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Example of the sign restriction
Recall our simple two variable structural VAR,

rt = ψ∆yt + σMPεMP
t

∆yt = −αrt + σDεD
t

If we assume ψ = 2 and α = σMP = σD = 1. Then, ∂∆yt
∂εMP

t
= −1/3.

However, observationally equivalent structural parameters would imply

∂∆yt
∂εMP

t
∈ (−0.45, 0.45).

If we impose ψ > 0, then the set reduces to

∂∆yt
∂εMP

t
∈ (−0.45, 0).
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Time-varying sign restrictions

To sharpen inference, we impose time-varying sign restrictions of the following form

St(At ,Ft) > 0 for t = 1, ...,T .

▶ St(At ,Ft) is any continuous function whose range is Rst where st is the number
of sign restrictions at time t.

▶ We only impose restrictions during the time that we know that they hold.
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Example of time-varying sign restrictions
Recall our simple two variable time-varying structural VAR,

rt = ψt∆yt + σMP
t εMP

t

∆yt = −αtrt + σD
t ε

D
t

Restriction:
▶ When the federal funds rate is the main policy instrument, we assume that

ψt > 0.

▶ In our application, we assume that the federal funds rate is the main policy
instrument throughout our sample except for 1979Q4:1982Q4 (non-borrowed
reserves targeting), 2009Q1:2015Q4 (ZLB), and 2020Q1:2021Q4 (COVID-19).
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Rotation invariant prior with sign restrictions

Suppose pS((At ,Ft)T
t=1) is rotation invariant, then the following prior is rotation

invariant as well,

pS∗((At ,Ft)T
t=1) ∝ pS((At ,Ft)T

t=1)︸ ︷︷ ︸
rotationally invariant

×
T∏

t=1
1{St(At ,Ft) > 0}︸ ︷︷ ︸
Sign restrictions

.

▶ Sign restrictions truncate the domain of the original prior.

▶ For two observationally equivalent structural parameter sequences, (At ,Ft)T
t=1

and (AtQt ,FtQt)T
t=1 take the same density value under this prior as long as they

satisfy sign restrictions.
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Posterior inference
Posterior distribution can be written as

p((At ,Ft)T
t=1|(yt)T

t=1) ∝ p((yt)T
t=1|(At ,Ft)T

t=1)pS((At ,Ft)T
t=1)

T∏
t=1

1{St(At ,Ft) > 0}

We develop an MCMC algorithm that approximates the posterior distribution based on
Metropolis-Hastings within Gibbs.

Main computational difficulty comes from the fact that we need to ensure that the
entire sequence satisfies the sign restrictions.

Our algorithm allows for hyperparameters.
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Application

Interpreting the recent policy tightening cycle
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Interpreting the recent policy tightening cycle

Since the latest inflation run-up, most monetary policy discussions have revolved
around the effects of interest rate increases on economic activity and inflation

The Fed has a clear mandate to restore inflation to 2 percent, but there is uncertainty
about how much interest rates have to increase to achieve the objective:

“Doing too little could allow above-target inflation to become entrenched and
ultimately require monetary policy to wring more persistent inflation from the
economy at a high cost to employment. Doing too much could also do unnec-
essary harm to the economy.” Powell (2023)
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Interpreting the recent policy tightening cycle
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Interpreting the recent policy tightening cycle
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Interpreting the recent policy tightening cycle

We rely on our methodology to tackle:

1. How did the Federal Reserve respond to the state of the economy during the
current policy tightening cycle?

2. How does the Fed’s stance during this cycle compare with more Dovish or
Hawkish monetary policy stances?
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Data

We use a 5-variable quarterly model of the U.S. economy:
▶ Output growth (∆yt , as measured by the log difference of real GDP)
▶ Inflation (πt , as measured by the log difference of core PCE)
▶ The federal funds rate (rt)
▶ Money growth (∆mt , as measured by the log difference of M2)
▶ Moody’s seasoned Baa corporate bond yield relative to the yield on 10-year

treasury constant maturity

The sample runs from 1959:Q1 until 2023:Q4
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An ordering invariant model with a rotation invariant prior
We estimate the TV-SVAR with the following prior

p((Bt ,Σt ,Qt)T
t=1) = p((Bt ,Σt)T

t=1)︸ ︷︷ ︸
RC-VAR

× p((Qt)T
t=1)︸ ︷︷ ︸

Uniform

Random correlations VAR (RC-VAR) with two lags
yt = Btxt−1 + et , et ∼ N(0,Σt)

Σt = DtCtDt

δt = 2 log(diag(Dt))
γt = G(Ct)

vec(Bt) = vec(Bt−1) + νt , νt ∼ N(0,VB)
δt = δt−1 + ηt , ηt ∼ N(0,Vδ)
γt = γt−1 + ζt , ζt ∼ N(0,Vγ)

From RC-VAR to TV-SVAR
y ′

tAt = x ′
tFt + ε′

t ⇐⇒ y ′
t = x ′

tBt + ε′
tQt

′h(Σt) for 1 ≤ t ≤ T 41



Sign restrictions for sharper inference

Let us focus on the monetary policy equation:

rt = ψ∆y ,t∆yt + ψπ,tπt + ψ∆m,t∆mt + ψcs,tcst︸ ︷︷ ︸
Policy Reaction Function /Systematic Component

+...+ σMP
t εMP

t︸ ︷︷ ︸
Shock

(one of the rows from the A′
tyt = F ′

txt + εt)

Restriction 1: Following a monetary policy shock (εMP
t ), the contemporaneous

impulse responses of the price level and the stock of money are negative, and the
contemporaneous impulse response of the federal funds rate is positive.
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Policy Reaction Function /Systematic Component

+ ...+ σMP
t εMP

t︸ ︷︷ ︸
Shock

Restriction 2:
▶ When the federal funds rate is the main policy instrument we assume the

following signs for coefficients in the policy equation:

ψ∆y ,t ∈ (0, 4), ψπ,t ∈ (0, 4), ψ∆m,t ∈ (0, 4), and ψcs,t ∈ (−4, 0)

▶ We assume that the federal funds rate is the main policy instrument throughout
our sample except for 1979Q4:1982Q4 (non-borrowed reserves targeting),
2009Q1:2015Q4 (ZLB), and 2020Q1:2021Q4 (COVID-19).
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The systematic component of monetary policy

rt = ψ∆y ,t∆yt + ψπ,tπt + ψ∆m,t∆mt + ψcs,tcst︸ ︷︷ ︸
Policy Reaction Function /Systematic Component

+ ...+ σMP
t εMP

t︸ ︷︷ ︸
Shock
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Standard deviation of the monetary policy shock

rt = ψ∆y ,t∆yt + ψπ,tπt + ψ∆m,t∆mt + ψcs,tcst︸ ︷︷ ︸
Policy Reaction Function /Systematic Component

+...+ σMP
t εMP

t︸ ︷︷ ︸
Shock
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The current monetary policy tightening cycle
Q: How did the Federal Reserve respond to the state of the economy during the
current policy tightening cycle?

On March 16, 2022, the Fed raised the federal funds rate target, initializing the current
monetary policy tightening cycle

Conditional on the date of lift-off, we investigate how the Federal Reserve responded
to the state of the economy during 2022Q2:2023Q2

Answering this question will help us understand how much of the unexpected changes
in the federal funds rate during this period came from the Fed’s usual policy rules
(responding to external shocks) versus unplanned policy shocks (deviation from the
rule)
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Historical decomposition – a simple example
To fix ideas, consider a simplified constant parameters version of our model with two
variables – real GDP growth (∆yt) and the federal funds rate (rt):

rt = ψ∆yt + ...+ σMPε
MP
t

∆yt = −αrt + ...+ σDε
D
t

It can be shown that

rt = Et−1rt︸ ︷︷ ︸
Predictable Component

+

Unpredictable Component︷ ︸︸ ︷
ψσD

1 + αψ
εD

t︸ ︷︷ ︸
Systematic Response to εD

t

+ σMP
1 + αψ

εMP
t︸ ︷︷ ︸

Monetary Policy Shock

47



What did the Federal Reserve do?

Federal Funds Rate
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Core Inflation

Projections Made After the Release of 2022Q1 Data

Federal funds rate in 2023Q2 = 5.0%
▶ Predictable (as of 2022Q1): 1.2%
▶ Monetary policy shocks: 1.5%
▶ Systematic policy reacting to other shocks: 2.3% 48



Monetary policy shock

Romer and Romer (2023) tentatively conclude that there was a monetary policy shock
during the current tightening cycle

“It seems quite clear that a contractionary monetary shock occurred in the
summer or early fall of 2022.”

Even though the definition of the shock in Romer and Romer (2023) is different than
ours, the narrative approach and the SVAR approach are broadly in line.
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Monetary Policy Shocks {εr ,t}2023Q2
t=2022Q1

rt = ψ∆y ,t∆yt + ψπ,tπt + ψ∆m,t∆mt + ψcs,tcst︸ ︷︷ ︸
Policy Reaction Function /Systematic Component

+...+ σMP
t εMP

t︸ ︷︷ ︸
Shock
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Hawkish vs. Dovish counterfactual simulations
Q: How does the Fed’s stance during this cycle compare with more Dovish or Hawkish
monetary policy stances?

We conduct two counterfactual simulations where we replay history since 2022Q2,
assuming that the Fed would have reacted to contemporaneous inflation differently
than in our estimated policy rule:

rt = ψ∆y ,t∆yt + ψπ,tπt + ψ∆m,t∆mt + ψcs,tcst︸ ︷︷ ︸
Policy Reaction Function /Systematic Component

+...+ σMP
t εMP

t︸ ︷︷ ︸
Shock

▶ “Hawkish Fed”: we replace the model’s estimated reaction to contemporaneous
inflation with a reaction that is twice as large

▶ “Dovish Fed”: we replace the model’s estimated reaction to contemporaneous
inflation with a reaction that is half as large
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Hawkish vs. Dovish counterfactual simulations

▶ In the Hawkish counterfactual, the output in the second quarter of 2023 would
have been about 0.5 percent lower

▶ Under the Dovish counterfactual, the economy would have marginally overheated
with output, and inflation would have run persistently above 5 percent 52



Summary
Reduced-form time-varying VARs,

y ′
t = x ′

tBt + e′
t , et ∼ N(0,Σt)

▶ Ordering invariant prior on (Bt ,Σt)T
t=1.

▶ Random-correlations VAR.

Structural time-varying VARs,

y ′
tAt = x ′

tFt + ε′
t , εt ∼ N(0, I)

▶ Rotation invariant prior on (At ,Ft)T
t=1.

▶ Time-varying sign restrictions for sharper inference.
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Possible extensions

Zero restrictions

Exploring the role of inference about the hyperparameters

Model selection via marginal likelihood comparisons
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