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Abstract

We propose an approach for Bayesian inference in time-varying structural vector

autoregressions (SVARs) identified with sign restrictions. The linchpin of our approach

is a class of rotation-invariant time-varying SVARs in which the prior and posterior

densities of any sequence of structural parameters belonging to the class are invariant to

orthogonal transformations of the sequence. Our methodology is new to the literature.

In contrast to existing algorithms for inference based on sign restrictions, our algorithm

is the first to draw from a uniform distribution over the sequences of orthogonal matri-

ces given the reduced-form parameters. We illustrate our procedure for inference by

analyzing the role played by monetary policy during the latest inflation surge.
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1 Introduction

Structural vector autoregressions (SVARs) featuring time-varying parameters are widely used

in empirical macroeconomics to explore a variety of questions, such as the economic impacts

of policy shocks, oil price shocks, the interaction between financial markets and economic

activity, and the role of monetary policy during the Great Inflation.1 This paper makes two

main contributions to the Bayesian approach for inference based on time-varying SVARs

using the class of rotation-invariant models introduced by Bognanni (2018) as a foundation.

Members of this class are defined by a measurement equation linking observed variables

to a sequence of time-varying structural parameters and a rotation-invariant prior that

remains unchanged under orthogonal transformations of these sequences. A rotation-invariant

prior is both a necessary and sufficient condition for ensuring that the posterior over the

sequences of time-varying structural parameters is identical across observationally equivalent

sequences, thereby necessitating identifying restrictions for causal inference. To address this

identification problem, we employ traditional sign restrictions, typically derived from economic

theory and institutional knowledge. Our methods also allow us to consider time-varying sign

restrictions, i.e., identification restrictions that vary across the sample. Importantly, working

with rotation-invariant priors ensures that only the sign restrictions influence the posterior

distribution over observationally equivalent sequences of time-varying structural parameters.

Consequently, within this framework, researchers can separate reduced-form estimation from

causal inference, thereby preserving the benefits that have made sign restrictions popular in

SVARs with constant parameters.

The first contribution of this paper is to characterize the class of rotation-invariant

time-varying SVARs models in terms of priors over sequences of time-varying orthogonal

reduced-form parameters. Specifically, expanding the work of Uhlig (2005) and Rubio-

Ramı́rez, Waggoner and Zha (2010), we define an invertible mapping between the sequences

of time-varying structural parameters and sequences of time-varying orthogonal reduced-

form parameters. With this mapping, we demonstrate that any prior over the sequences of

1See, for example, Primiceri (2005); Sims and Zha (2006b); Baumeister and Peersman (2013); Gaĺı
and Gambetti (2015); Amir-Ahmadi, Matthes and Wang (2016); Brunnermeier et al. (2021); Hubrich and
Waggoner (2022); Aastveit, Furlanetto and Loria (2023).
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time-varying reduced-form parameters, combined with an independent uniform prior over

the sequences of orthogonal matrices, defines an element of the class of rotation-invariant

time-varying SVARs models. This result is a crucial if-and-only-if condition that delineates

the scope of our methodology: any of the commonly used priors for the time-varying reduced-

form parameters—e.g., Primiceri (2005); Cogley and Sargent (2005) and the dynamic linear

models with discounted Wishart stochastic volatility inspired by Uhlig (1994, 1997) and

documented in Bognanni (2018)—can be adapted for structural analysis when combined with

an independent uniform prior over the sequences of orthogonal matrices. This underscores

that the class of rotation-invariant time-varying SVARs models is extensive, enhancing its

practical utility.

The second contribution is to introduce a Gibbs Sampler algorithm that can be used

to draw from the posterior distribution of any element of the class of rotation-invariant

time-varying SVARs models conditional on the time-varying sign restrictions. The algorithm

exploits the slice elliptical sampling developed by Murray, Adams and Mackay (2010) and is

the first to draw from the class of rotation-invariant time-varying SVARs. Previous attempts

to draw from the posterior of particular elements of the class (e.g., Baumeister and Peersman,

2013; Bognanni, 2018; Debortoli, Gaĺı and Gambetti, 2020) consider a uniform distribution

over the sequences of orthogonal matrices conditional on the reduced-form parameters and

the sign restrictions. Although this approach simplifies posterior sampling, once a prior over

the sequences of time-varying reduced-form parameters is specified, this prior and the prior

over the sequences of orthogonal matrices are not independent. Consequently, the draws are

from a model that does not belong to the class of rotation-invariant time-varying SVARs, and

the posterior distribution over observationally equivalent sequences of time-varying structural

parameters is not solely determined by the sign restrictions. When describing the algorithm,

we use a specific prior over the time-varying reduced-form parameters that relies on Archakov

and Hansen’s (2021) novel parameterization of correlation matrices. Hence, we refer to it

as the Random Correlations prior, and we demonstrate that it defines an element of the

class that we will call the Random Correlations SVAR (RC-SVAR). Our rationale for using

the RC-SVAR is motivated by the insights in Giannone, Lenza and Primiceri (2015), which

highlight that a natural way to assess the impact of priors is by evaluating their implied
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out-of-sample forecasting performance. Arias, Rubio-Ramı́rez and Shin (2023) show that

for the empirical applications typically considered, the Random Correlations prior generally

implies a higher log-predictive score than most alternative models. While the algorithm

will be described in terms of RC-SVARs, it can be used for any element in the class of

rotation-invariant time-varying SVARs induced by any of the alternative priors over the

time-varying reduced-form parameters mentioned above.

We illustrate our methods by analyzing the monetary policy tightening cycle that began

on March 16, 2022. Since lift-off, policy discussions have revolved around the effects of

interest rate increases on economic activity and inflation. In particular, there has been

ongoing debate regarding how much interest rates must increase to achieve this objective. As

Powell (2023) recently noted, doing too little or too much could cause unnecessary harm to

the economy. Motivated by this discussion, we use our methodology to tackle three questions:

(i) How did the Federal Reserve respond to the state of the economy during the current policy

tightening cycle? (ii) How does the Federal Reserve’s performance during the tightening cycle

compare with more dovish or hawkish monetary policy stances? and (iii) Was the Federal

Reserve behind the curve? And, if so, at what cost? Allowing for time variation in both

the structural parameters and the sign restrictions is important for several reasons. Not

only has the Federal Reserve adopted different operating procedures such as interest rates

and non-borrowed reserves targeting, but also the reaction function may have differed over

time within operating procedures (see, e.g., Clarida, Gaĺı and Gertler, 2000). In addition,

certain structural relations in the economy may have changed. Our econometric approach

provides a helpful setting to discipline inference about the reaction function with a relatively

small number of novel time-varying sign restrictions. This setup allows us to change the

identification restrictions across the sample.

To answer the first question, we use our estimates to decompose the quarterly average level

of the federal funds rate for each quarter from 2022Q2 until 2023Q2 into three components: the

predictable component; the unpredictable component that can be attributed to non-monetary

policy shocks (such as demand or supply shocks) hitting the economy; and the unpredictable

component that can be attributed to monetary policy shocks. Our estimates suggest that

about two-thirds of the unpredictable component was a response to non-monetary policy
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shocks. The response to non-monetary policy shocks is due to the systematic part of monetary

policy. Both systematic monetary policy and monetary policy shocks increased the fed funds

rate above the predicted rate in 2022Q2.

To shed light on the second question, we replay history under two counterfactual simula-

tions that we label Dovish Fed and Hawkish Fed. These simulations allow us to determine

what would have happened if the Fed had been more or less aggressive relative to the reaction

function estimated by our model. In the Dovish (Hawkish) Fed counterfactual, we modify the

reaction function so that the response of the federal funds rate to inflation is half (twice) as

large as the one in the estimated reaction function for the first quarter of 2022. Focusing on

the posterior medians, through the lens of our model, under the Dovish Fed counterfactual, the

economy would have marginally overheated, and inflation would have run persistently above

5 percent. Under the Hawkish Fed counterfactual, inflation would have quickly decreased at

a small cost in terms of economic activity: real GDP in the second quarter of 2023 would

have been about 0.5 percent lower than in the data. Even so, when looking at the level of

output at risk, the lower envelope of the 68 percent probability bands shows that the cost in

terms of output could have been as large as 1.7 percent. Turning to the third question, our

model estimates support the view that the Federal Reserve was behind the curve (see, e.g.,

Summers, 2021) in 2021. Nevertheless, we also find that the delay in increasing the federal

funds rate was not the main driver of the surge in inflation during 2021. Non-monetary

shocks explain the unexpected increase in inflation during this time.

Additionally, the Online Appendix presents a series of robustness checks to further validate

our findings. Specifically, we examine the effects of distinguishing between two types of

monetary policy shocks: one that primarily influences the short end of the yield curve and

another that impacts the long end. This distinction allows us to explore the nuanced effects

of monetary policy across different maturities. Furthermore, we assess the sensitivity of our

results to the inclusion of both time-varying sign restrictions and time-varying parameters,

emphasizing that the consideration of both elements is critical in the comprehensive analysis

of time-varying SVARs models. Our analysis underscores the importance of accounting

for these factors to ensure that our conclusions are robust and reflective of the underlying

economic dynamics.
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2 Rotation-Invariant Time-Varying Structural Models

Consider the general class of time-varying SVARs models defined by Bognanni (2018). Two

elements define the class. The first element is a measurement equation:

y′tAt = x
′
tFt +ε

′
t with εt ∼ N (0n, In) for 1 ≤ t ≤ T, (1)

where yt is an n × 1 vector of endogenous variables, xt = [1 y′t−1 ⋯ y′t−p]
′
is an m × 1 vector

featuring a constant and lag endogenous variables with m = np + 1, εt is an n × 1 vector of

orthogonal structural shocks, p is the lag length, T is the sample size, and the initial conditions,

(y0,⋯,y1−p), can have any distribution with full support. The vector εt, conditional on time

t − 1 information, is Gaussian with mean zero and covariance matrix In, the n × n identity

matrix. The n × n matrix At, which must be invertible, and the m × n matrix Ft are the

time-varying structural parameters.

The second element is the law of motion for the time-varying structural parameters:

pS((At,Ft)
T
t=1 ∣ ϕ) =

T

∏
t=1
pS (At,Ft ∣ (Aj,Fj)

t−1
j=1,ϕ) , (2)

where ϕ denotes the constant parameters controlling the evolution of the time-varying

structural parameters.2 We are going to assume that all the elements of the class share the

same measurement equation. Thus, different elements of the class are characterized by a

different law of motion pS((At,Ft)
T
t=1 ∣ ϕ). The theory we develop is valid for the general law

of motion given by Equation (2). To simplify the exposition, all the examples in this paper

will assume that the law of motion is Markov, which means that pS (At,Ft ∣ (Aj,Fj)
t−1
j=1,ϕ) =

pS (At,Ft ∣At−1,Ft−1,ϕ). Importantly, we assume that the law of motion satisfies:

pS((At,Ft)
T
t=1 ∣ ϕ) = pS((AtQt,FtQt)

T
t=1 ∣ ϕ), (3)

for every sequence of orthogonal matrices (Qt)
T
t=1 ∈ O

T
n .

3 This assumption implies that if

(At,Ft)
T
t=1 is any permissible sequence of time-varying structural parameters and (Qt)

T
t=1

2We follow the convention that p (A1,F1 ∣ (Aj ,Fj)0j=1,ϕ) = p (A1,F1 ∣ ϕ).
3The notation On denotes the set of all n × n orthogonal matrices and OT

n = ∏T
t=1On the set of all

sequences of n × n orthogonal matrices of length T .
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is any sequence of orthogonal matrices, then (AtQt,FtQt)
T
t=1 is a permissible sequence of

time-varying structural parameters such that Equation (3) holds.4,5

The likelihood of the model can be written as:

p((yt)
T
t=1 ∣ (At,Ft)

T
t=1,ϕ) =

T

∏
t=1
p(yt ∣ xt,At,Ft). (4)

Notice that the likelihood does not depend on ϕ. Given our assumption about the shocks,

the distribution of yt, conditional on (xt,At,Ft), is Gaussian with mean x′tFtA
−1
t and

variance (AtA
′
t)
−1. In particular, p(yt ∣ xt,At,Ft) can be easily computed. The parameters

of this class of time-varying SVAR models are ((At,Ft)
T
t=1,ϕ). Hence, the law of motion

given by Equation (2) can be interpreted as the prior over the time-varying structural

parameters, conditional on ϕ.6 The prior can be completed by specifying a marginal prior

over the constant parameters, which we will denote p(ϕ ∣ ψ), where ψ are some fixed

hyperparameters.7 Equation (3) must hold for every ϕ in the support of the marginal prior.

We say that ((At,Ft)
T
t=1,ϕ) and ((Ãt, F̃t)

T
t=1, ϕ̃) will be observationally equivalent if and

only if the likelihoods are equal for almost all (yt)
T
t=1 ∈ RnT . Because the likelihood does not

depend on ϕ, it makes sense to talk about (At,Ft)
T
t=1 and (Ãt, F̃t)

T
t=1 being observationally

equivalent. The following proposition, which is a reminiscence of the constant parameter case,

gives a necessary and sufficient condition for the observational equivalence of (At,Ft)
T
t=1 and

(Ãt, F̃t)
T
t=1.

Proposition 1. The time-varying structural parameters (At,Ft)
T
t=1 and (Ãt, F̃t)

T
t=1 are

observationally equivalent if and only if there exists (Qt)
T
t=1 ∈ O

T
n such that (Ãt, F̃t)

T
t=1 =

(AtQt,FtQt)
T
t=1.

See Appendix A for the proof. A similar (but not identical) proposition can be found

in Bognanni (2018). In light of Proposition 1, we can interpret the restriction given by

Equation (3) as the necessary and sufficient condition that forces the prior over the time-

varying structural parameters, to be equal over observationally equivalent time-varying

4The sequence (At,Ft)Tt=1 is permissible if and only if pS((At,Ft)Tt=1 ∣ ϕ) > 0.
5When possible, we will avoid the use of the word sequence to economize language.
6The prior over the time-varying structural parameters is always conditional on ϕ, hence we will only

write “the prior over the time-varying structural parameters.”
7At the cost of more complicated notation, we could also consider a prior over ψ.
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structural parameters. This restriction ensures that the prior over the time-varying structural

parameters does not affect identification and only the identification restrictions influence

the posterior distribution of observationally equivalent time-varying structural parameters.

For this reason, we use the term rotation-invariant time-varying SVARs models to refer

to any structural model consistent with Equations (1)-(3) and rotation-invariant priors to

those consistent with Equation (3).8 To solve the identification problem, we will impose sign

restrictions on either the sequence of time-varying structural parameters or some function of

them, such as sequences of time-varying IRFs. These will be discussed in Section 5.

2.1 Heteroskedastic Structural Shocks

In this section, we now discuss models in which heteroskedastic structural shocks are the

only source of time variation in the model. In particular, we now show how the condition

in Equation (3) rule out time-varying SVARs with heteroskedastic structural shocks from

belonging to the class of rotation-invariant time-varying SVARs models. Such models have

the following common specification:

y′tA = x
′
tF+ε̃

′
t with ε̃t ∼ N (0n,Ψt) for 1 ≤ t ≤ T, (5)

where Ψt is an n × n time-varying diagonal matrix with positive diagonal, A is a n × n

invertible matrix with ones along the diagonal, and F is an m × n matrix. These models can

be written in terms of the measurement Equation (1) by defining the n×n matrix At =AΨ
− 1

2
t

and the m × n matrix Ft = FΨ
− 1

2
t as the time-varying structural parameters. Lütkepohl and

Netšunajev (2017) describe several ways to model the law of motion of Ψt.9 With these

ingredients at hand, we can now formally show the following result.

Proposition 2. Models with heteroskedastic structural shocks as defined in Equation (5) do

not belong to the class of rotation-invariant time-varying SVARs models.

8Multiplication by an n × n orthogonal matrix is either a rotation of Rn or a rotation of Rn times a
reflection of Rn, however, it is embedded in the literature to refer to orthogonal matrices as rotations. So, we
take rotation invariant to mean invariant to multiplication by any orthogonal matrix.

9For diagonal matrices, Ψ
−

1
2

t denotes the element by element inverse square root, either positive or
negative, of the elements of Ψt. There are also alternative ways of normalizing these models other than fixing
each element of the diagonal of A to one. These can also be written in terms of Equation (1).
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See Appendix A for the proof. Similar arguments show that the restriction given by

Equation (3) excludes the models described in Sentana and Fiorentini (2001); Rigobon (2003);

Lanne and Lütkepohl (2008); Lanne, Lütkepohl and Maciejowska (2010); Brunnermeier et al.

(2021). Furthermore, a model with time-varying Ft and Ψt but time-invariant A is also

excluded from the class by the same reasoning, as we can still write At = AΨ−1t in the

proof above, and the argument follows.10 At this point, one might wonder if the class of

rotation-invariant time-varying SVARs models is too small to be of practical use. In the next

section, we show how to characterize and easily construct models belonging to the class. It is

important to mention that Bognanni (2018) presents a concrete instance of a fully specified

probability model that belongs to the class; we will give details about this model in Section 4.

While heteroskedasticity of the structural shocks can be exploited for identification, these

shocks may not have a meaningful structural economic interpretation Herwartz and Lütkepohl

(2014). In contrast, using sign restrictions—inspired by economic theory or institutional

knowledge—on either the structural parameters or some function of the structural parameters,

like impulse responses, ensures that the shocks have a meaningful structural economic

interpretation. In addition, the approach of identification through heteroskedasticity requires

constant impulse responses up to scale, which has been deemed to be a potential Achilles’

heel of the approach (see e.g., Brunnermeier et al., 2021).

3 Time-Varying Orthogonal Reduced-Form Models

Proposition 1 implies that the measurement equation described in Section 2 can alternatively

be written in terms of what we call the time-varying orthogonal reduced-form parameters.11

This parameterization is characterized by a sequence of time-varying reduced-form parameters

(Bt,Σt)
T
t=1 and a sequence of time-varying orthogonal matrices (Qt)

T
t=1, and the measurement

equation can be written as follows:

y′t = x
′
tBt +ε

′
tQt

′h(Σt) for 1 ≤ t ≤ T, (6)

10This is relevant for those willing to give a structural interpretation to Cogley and Sargent (2005).
11See Arias, Rubio-Ramı́rez and Waggoner (2018) for a definition in the constant parameter case.
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where the n × n matrix h(Σ) is any decomposition of the variance-covariance matrix Σ

satisfying h(Σ)′h(Σ) = Σ. We will take h to be the upper triangular Cholesky decomposition,

normalized so that the diagonal is positive, though any differentiable decomposition would

do. As in the case of constant parameters SVARs, the orthogonal reduced-form parameters

are convenient for drawing. The orthogonal reduced-form parameters can be turned into

structural parameters by exploiting the following mapping from the time-varying structural

parameters to the time-varying orthogonal reduced-form parameters:

fh((At,Ft)
T
t=1) = (FtA

−1
t

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
Bt

, (AtA
′
t)
−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Σt

, h((AtA
′
t)
−1)At

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Qt

)
T

t=1. (7)

This function is invertible and its inverse is given by:

f−1h ((Bt,Σt,Qt)
T
t=1) = (h(Σt)

−1Qt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

At

,Bt h(Σt)
−1Qt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ft

)
T

t=1. (8)

Let pOR((Bt,Σt,Qt)
T
t=1 ∣ ϕ) denote a prior over the time-varying orthogonal reduced-form

parameters, conditional on ϕ.12 The functions defined by Equations (7) and (8) allow us

to transform priors over the time-varying structural parameters into equivalent priors over

the time-varying orthogonal reduced-form parameters and vice versa, but we must take

into account the volume element of the transformations. By Proposition 1 of Arias, Rubio-

Ramı́rez and Waggoner (2018), the volume element of the mapping given by Equation (7)

is vfh((At,Ft)
T
t=1) =∏

T
t=1 2

n(n+1)
2 ∣ det(At) ∣

−(2n+m+1) and the volume element of the mapping

given by Equation (8) is vf−1
h
((Bt,Σt,Qt)

T
t=1) = ∏

T
t=1 2

−n(n+1)
2 ∣ det(Σt) ∣

− 2n+m+1
2 . Thus, the

prior over the time-varying orthogonal reduced-form parameters induced by pS is:

pOR((Bt,Σt,Qt)
T
t=1 ∣ ϕ) = 2

−n(n+1)T
2 (

T

∏
t=1
∣ det(Σt) ∣ )

− 2n+m+1
2

pS(f
−1
h ((Bt,Σt,Qt)

T
t=1) ∣ ϕ),

and the prior over the time-varying structural parameters induced by pOR is:

pS((At,Ft)
T
t=1 ∣ ϕ) = 2

n(n+1)T
2 (

T

∏
t=1
∣ det(At) ∣ )

−(2n+m+1)
pOR(fh((At,Ft)

T
t=1) ∣ ϕ).

12The prior over the time-varying orthogonal reduced-form parameters is always conditional on ϕ, hence
we will only write “prior over the time-varying orthogonal reduced-form parameters.”
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The following proposition shows that Equation (3) translates into a restriction on the

prior over the time-varying orthogonal reduced-form parameters.

Proposition 3. The prior over the time-varying structural parameters satisfies Equation (3)

if and only if the induced prior over the time-varying orthogonal reduced-form parameters

does not depend on (Qt)
T
t=1.

See Appendix A for the proof. The proposition implies that for any prior over the time-

varying structural parameters satisfying Equation (3), the induced prior over the time-varying

orthogonal reduced-form parameters must be independent over (Bt,Σt)
T
t=1 and (Qt)

T
t=1, and

the induced prior over (Qt)
T
t=1 must be uniform with respect to the volume measure over OT

n .
13

More importantly, it also says that any prior over the time-varying orthogonal reduced-form

parameters such that the prior over the orthogonal matrices conditional on the time-varying

reduced-form parameters is uniform induces a prior over the structural parameters that satisfy

the restriction given by Equation (3).14 In other words, any prior over the time-varying

orthogonal reduced-form parameters that can be written as:

pOR((Bt,Σt,Qt)
T
t=1 ∣ ϕ) =

pR((Bt,Σt)
T
t=1 ∣ ϕ)

v(On)
T

,

where v(On) is the volume of On with respect to the volume measure overOn and pR((Bt,Σt)
T
t=1 ∣

ϕ) denotes the prior over the time-varying reduced-form parameters. Hence, every prior over

(Bt,Σt)
T
t=1 corresponds to an element of the class of rotation-invariant time-varying SVARs

models, and the prior over the time-varying structural parameters induced by pR is:

pS((At,Ft)
T
t=1 ∣ ϕ) = 2

n(n+1)T
2 (

T

∏
t=1
∣ det(At) ∣ )

−(2n+m+1)pR(π(fh((At,Ft)
T
t=1)) ∣ ϕ)

v(On)
T

,

where π(⋅) denotes the projection of (Bt,Σt,Qt)
T
t=1 onto (Bt,Σt)

T
t=1. In the next section, we

use the novel parameterization of the correlation matrix described in Archakov and Hansen

13The proposition generalizes Proposition 4 in Bognanni (2018). The Haar measure over On, which is
only defined up to a scale factor, is any measure that is invariant with respect to rigid transformations,
rotations, and reflections in this case. The volume measure is a Haar measure but with the scale determined

by Lebesgue measure on Rn2

, the set of all n × n matrices. The volume measure is the natural measure over
orthogonal matrices in the sense that the Lebesgue measure is the natural measure over Euclidean spaces.

14Furthermore, the prior over the time-varying reduced-form parameters will be Markov if and only if the
prior over the time-varying structural parameters is Markov.
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(2021) to define a prior over the time-varying reduced-form parameters as in Arias, Rubio-

Ramı́rez and Shin (2023). This prior defines an element of the class of rotation-invariant

time-varying SVARs models. These results depend only on the fact that the volume element

does not depend on the sequence of orthogonal matrices. Hence, Proposition 3 will extend

to any alternative parameterization of the class, provided that the volume element does not

depend on the sequence of orthogonal matrices. For example, this would be the case if the

measurement equation were written in terms of impulse responses.

4 Time-Varying Reduced-Form Model

In this section, we describe the prior over the time-varying reduced-form parameters that

will be used in the rest of the paper. It is based on a time-varying extension of the

parameterization for reduced-form variance-covariance matrices proposed by Archakov and

Hansen (2021). Consider the decomposition of the reduced-form variance-covariance matrix

given by Σt =DtCtDt, where Dt = diag(diag(Σt)
1
2 ) is the diagonal matrix containing the

standard deviations and Ct = D
−1
t ΣtD

−1
t is the correlation matrix.15 We can map Σt to

(δt,γt) ∈ Rn × Rnγ , where nγ = n(n − 1)/2, δt = 2 log(diag(Dt)), and γt = vecl(log(Ct)).16

Clearly, the mapping Dt → δt is invertible and, by Theorem 1 of Archakov and Hansen

(2021), the mapping Ct → γt is also invertible. Thus, we can define an invertible function

gRC((Σt)
T
t=1) = (δt,γt)

T
t=1, and as a consequence, any law of motion, or equivalently any

prior, defined over (Bt,δt,γt)Tt=1 translates into a prior over the time-varying reduced-form

parameters.17 Consider the following law of motion for (Bt,δt,γt)Tt=2:

βt = βt−1 + νt, with νt ∼ N (0nm,Vβ)and βt = vec(Bt), (9)

δt = δt−1 + ηt, with ηt ∼ N (0n,Vδ) , (10)

γt = γt−1 + ζt, with ζt ∼ N (0nγ ,Vγ) , (11)

15The linear operator diag(⋅), when applied to a vector, denotes the diagonal matrix with the vector along
the diagonal and, when applied to a square matrix, denotes the diagonal of the matrix. The square root is
the element-by-element positive square root.

16The linear operator vecl(⋅) returns the vectorized strictly lower triangular component of a square matrix.
When applied to a vector, the function log(⋅) denotes the element-by-element logarithm and, when applied to
a square matrix, denotes the matrix logarithm.

17We will also use the function gRC to denote a mapping from Σt to (δt,γt).
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where Vβ is a symmetric definite positive nm × nm matrix, Vδ = diag(Vδ,1, . . . ,Vδ,n) is a

diagonal definite positive n × n matrix and Vγ = diag(Vγ,1, . . . ,Vγ,nγ) is a diagonal definite

positive nγ × nγ matrix. In addition, we assume that β1 ∼ N (mβ1 ,Vβ1), where mβ1 is a

nm × 1 vector and Vβ1 is a symmetric definite positive nm × nm matrix; δ1 ∼ N (mδ1 ,Vδ1),

where mδ1 is an n × 1 vector and Vδ1 is an n × n diagonal matrix with positive diagonal; and

γ1 ∼ N (mγ1 ,Vγ1), where mγ1 is an nγ × 1 vector and Vγ1 is an nγ × nγ diagonal matrix with

positive diagonal. It is straightforward to see that the constant parameters of the model are:

ϕRC = (vech(Vβ),diag(Vδ),diag(Vγ),mβ1 ,vech(Vβ1),mδ1 ,diag(Vδ1),mγ1 ,diag(Vγ1)) ,

which is a vector of dimension nRC =
nm(nm+1)

2 +n+nγ +nm+
nm(nm+1)

2 + 2n+ 2nγ . We denote

the above prior over (Bt,δt,γt)Tt=1 by

pRC((Bt,δt,γt)
T
t=1 ∣ ϕ

RC) = pRC((Bt)
T
t=1 ∣ ϕ

RC)pRC((δt,γt)
T
t=1 ∣ ϕ

RC),

which we call the Random Correlations prior, where pRC((Bt)
T
t=1 ∣ ϕ

RC) = ∏
T
t=2 p

RC(Bt ∣

Bt−1,ϕRC)pRC(B1 ∣ ϕRC) and

pRC((δt,γt)
T
t=1 ∣ ϕ

RC) =
T

∏
t=2
pRC(δt,γt ∣ δt−1,γt−1,ϕ

RC)pRC(δ1,γ1 ∣ ϕ
RC) =

(
T

∏
t=2
pRC(δt ∣ δt−1,ϕ

RC)pRC(γt ∣ γt−1,ϕ
RC))pRC(δ1 ∣ ϕ

RC)pRC(γ1 ∣ ϕ
RC).

This prior, via the function gRC and the identity mapping, induces a prior over the time-

varying reduced-form parameters, denoted by pRC
R ((Bt,Σt)

T
t=1 ∣ ϕ

RC), of the form:

pRC
R ((Bt,Σt)

T
t=1 ∣ ϕ

RC) = vgRC((Σt)
T
t=1)p

RC((Bt, g
RC(Σt))

T
t=1 ∣ ϕ

RC), (12)

where the volume element vgRC((Σt)
T
t=1) can be computed by numerical differentiation.18

If we combine this prior over the time-varying reduced-form parameters with the uniform

prior over (Qt)
T
t=1, the results of Section 3 imply that the induced prior over the time-

18Because Σt is symmetric, there is an implicit linear restriction on Σt. To directly compute the volume
element associated with the function gRC(), restricted to symmetric matrices, would require Theorem 3, as
opposed to the simpler Theorem 2, of Arias, Rubio-Ramı́rez and Waggoner (2018). Either approach will give
identical answers, though using Theorem 3 may be more efficient numerically.
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varying structural parameters will satisfy the condition given by Equation (3). In particular,

we are going to consider a prior over the time-varying structural parameters, denoted by

pRC
S ((At,Ft)

T
t=1 ∣ ϕ

RC), equal to:

pRC
S ((At,Ft)

T
t=1 ∣ ϕ

RC) = 2
n(n+1)T

2 (
T

∏
t=1
∣ det(At) ∣ )

−(2n+m+1)pRC
R (π(fh((At,Ft)

T
t=1))) ∣ ϕ

RC)

v(On)
T

(13)

where π(⋅) denotes the projection of (Bt,Σt,Qt)
T
t=1 onto (Bt,Σt)

T
t=1. This prior corresponds

to an element of the class of rotation-invariant time-varying SVARs models that we will call

Random Correlations SVAR (RC-SVAR). Together with a prior over the constant parameters

pRC(ϕRC) and the likelihood in Equation (4), our prior over the time-varying structural

parameters implies a posterior over the time-varying structural parameters that we label

pRC
S ((At,Ft)

T
t=1,ϕ

RC ∣ (yt)
T
t=1).

It will be useful to introduce more notation. The mapping fh((At,Ft)
T
t=1) combined with

ḡRC((Bt,Σt,Qt)
T
t=1) = (Bt, gRC(Σt),Qt)

T
t=1, which we will denote (ḡRC ○ fh)((At,Ft)

T
t=1) =

(Bt,δt,γt,Qt)
T
t=1, constitutes the key ingredient of the Gibbs Sampler for inference based on

time-varying SVARs identified with sign restrictions developed in this paper, see Section 5.

4.1 Alternative Time-Varying Reduced-Form Models

Although our algorithms will be written in terms of the RC-SVAR, we could write them in

terms of other class members. For example, we could consider the member corresponding to

the prior over the time-varying reduced-form parameters in Primiceri (2005), which relies on a

decomposition of the reduced-form variance-covariance matrix given by Σt = Ξ
−1
t ΩtΩ

′
t(Ξ

′
t)
−1,

where Ωt is a positive diagonal matrix and Ξt is a lower triangular matrix with ones along

the diagonal. The prior over (Bt,Ξt,Ωt)
T
t=1 defined in Primiceri (2005), which we label

pP ((Bt,Ξt,Ωt)
T
t=1 ∣ ϕ

P ) = pP ((Bt)
T
t=1 ∣ ϕ

P )pP ((Ξt,Ωt)
T
t=1 ∣ ϕ

P ),

and the invertible function gP ((Σt)
T
t=1) = (Ξt,Ωt)

T
t=1 induce a prior over the time-varying

reduced-form parameters denoted by pPR((Bt,Σt)
T
t=1 ∣ ϕ

P ), of the form:

pPR((Bt,Σt)
T
t=1 ∣ ϕ

P ) = vgP ((Σt)
T
t=1)p

P ((Bt, g
P (Σt))

T
t=1 ∣ ϕ

P ),

13



where the volume element vgP ((Σt)
T
t=1) can be computed numerically. This prior over the

time-varying reduced-form parameters along with the uniform prior over the sequences of

orthogonal matrices induces an alternative prior over the time-varying structural parameters

satisfying the condition given by Equation (3). We denote such prior by pPS ((At,Ft)
T
t=1 ∣ ϕ

P ):

pPS ((At,Ft)
T
t=1 ∣ ϕ

P ) = 2
n(n+1)T

2 (
T

∏
t=1
∣ det(At) ∣ )

−(2n+m+1)pPR(π(fh((At,Ft)
T
t=1))) ∣ ϕ

P )

v(On)
T

.

Together with a prior over the constant parameters pP (ϕP ) and the likelihood in Equation (4),

this prior over the time-varying structural parameters implies a posterior over the time-varying

structural parameters that we label pPS ((At,Ft)
T
t=1,ϕ

P ∣ (yt)
T
t=1). Since the order of the

variables matters in this framework (see Bognanni, 2018), there are n! different elements of

the class and posteriors, where n is the number of variables.19 At this point is also important

to highlight Cogley and Sargent (2005), who present a similar approach with a time-invariant

Ξ. Hence, their model could also be used as an alternative time-varying reduced-form model

to be combined with the uniform prior over the sequences of orthogonal matrices to induce

an alternative element of our class.

The fact that Primiceri’s (2005) approach has the unappealing feature of being order-

dependent has motivated a quest for order-independent approaches. In particular, as in our

baseline prior over the reduced-form parameters, the prior over the time-varying reduced-form

parameters defined in Bognanni (2018) is order invariant. This approach relays on the

discounted Wishart stochastic volatility model to directly define a prior over the time-varying

reduced-form parameters, which we label pDW
R ((Bt,Σt)

T
t=1 ∣ ϕ

DW ). When combined with

the uniform prior over the sequences of orthogonal matrices, it implies a prior over the

time-varying structural parameters, denoted by pDW
S ((At,Ft)

T
t=1 ∣ ϕ

DW ), where:

pDW
S ((At,Ft)

T
t=1 ∣ ϕ

DW ) = 2
n(n+1)T

2 (
T

∏
t=1
∣ det(At) ∣ )

−(2n+m+1)pDW
R (π(fh(At,Ft)

T
t=1) ∣ ϕ

DW )

v(On)
T

.

Together with a prior over the constant parameters pDW (ϕDW ) and the likelihood in Equa-

tion (4), this prior over the time-varying structural parameters implies a posterior over the

19It is important to highlight that if one considers Primiceri’s (2005) as a time-varying SVAR model, it
does not belong to the order-invariant class. This is due to the recursive identification.
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time-varying structural parameters that we label pDW
S ((At,Ft)

T
t=1,ϕ

DW ∣ (yt)
T
t=1).

Our rationale for using the Random Correlations prior is motivated by the insights in

Giannone, Lenza and Primiceri (2015) pointing out that a natural way to determine the

impact of priors is to assess their implied out-of-sample forecasting performance. In a similar

environment, Arias, Rubio-Ramı́rez and Shin (2023) shows that the Random Correlations

prior outperforms most of the orderings of the variables in Primiceri (2005) and Bognanni

(2018). Unfortunately, given the number of variables in the current framework we cannot

compare the Random Correlations prior against all the orderings of the variables in Primiceri

(2005). Finally, as explained in Arias, Rubio-Ramı́rez and Shin (2023), we also could have

followed Asai and McAleer (2009) and directly imposed a Wishart process-based prior on

the dynamics of the correlation matrix without the need to parameterize it. While the

empirical performance is similar across the procedures, we favor the Random Correlations

prior approach presented here because it preserves the spirit of the random walk modeling in

Primiceri (2005). Chan, Koop and Yu (2021) also describes a prior over the time-varying

reduced-form parameters that could be used.

5 Algorithms

This section presents algorithms to draw from the posterior distribution of rotation-invariant

time-varying SVARs models conditional on sign restrictions. To facilitate the exposition we

will use the RC-SVAR, but our algorithms could be easily adapted for any model of the class

of rotation-invariant time-varying SVARs models and, in particular, to the two alternative

models described in Section 4.1. Oftentimes we will refer to this distribution as the desired

target distribution.

We present three algorithms. The first algorithm is straightforward but infeasible for

the sample sizes commonly encountered in empirical macroeconomics unless the identifying

sign restrictions are limited to a small number of periods. The second algorithm is typically

employed by current papers. This algorithm is feasible, but we show that it unfortunately

does not draw from the desired target posterior distribution. The third algorithm draws from

the desired target posterior distribution subject to sign restrictions on an arbitrary number
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of periods. Thus, it overcomes the limitations of the two algorithms mentioned above.

Let SS,t(At,Ft) be any continuous function whose range is Rst , where st is the number

of sign restrictions at time t. We will consider sign restrictions of the form SS,t(At,Ft) > 0.

For instance, the function could be a collection of impulse responses of various variables to

various shocks at various horizons. These are very general types of sign restrictions, but they

do not allow for restrictions to combine information across different t. The advantage of this

is that we can determine if the sign restrictions are satisfied independently across t. Allowing

for time-varying sign restrictions is another important contribution of our methodology. For

example, researchers interested in identifying monetary policy rules typically choose the

federal funds rate to be the monetary policy instrument for the entire sample under analysis.

This assumption is questionable because the funds rate has not always been the policy

instrument: e.g., the Federal Reserve targeted non-borrowed reserves during the early years

of Chair Paul Volcker’s tenure. As we demonstrate in Section 6, time-varying sign restrictions

would allow these researchers to tackle the challenge by relaxing the assumption that the

federal funds rate is the policy instrument throughout the entire sample.

Let [SS,t(At,Ft) > 0] be an indicator function that equals 1 if the sign restrictions

are satisfied at time t, and 0 otherwise. In addition, let SS((At,Ft)
T
t=1) > 0 denote the

collection of sign restrictions, so that [SS((At,Ft)
T
t=1) > 0] =∏

T
t=1 [SS,t(At,Ft) > 0], and OT =

{(At,Ft)
T
t=1 ∶ [SS((At,Ft)

T
t=1) > 0] = 1}. Equipped with these definitions, we can formally

state that our objective is to sample from the posterior

pRC
S ((At,Ft)

T
t=1,ϕ

RC ∣ (yt)
T
t=1,SS((At,Ft)

T
t=1) > 0)

defined as

p((yt)
T
t=1 ∣ (At,Ft)

T
t=1) [SS((At,Ft)

T
t=1) > 0)]p

RC
S ((At,Ft)

T
t=1 ∣ ϕ

RC)p(ϕRC)

∫ ∫OT p((yt)
T
t=1 ∣ (At,Ft)

T
t=1)p

RC
S ((At,Ft)

T
t=1 ∣ ϕ

RC)d(At,Ft)
T
t=1p(ϕ

RC)dϕRC
. (14)

We organize the rest of this section in three parts. The first part presents the simple but

limited algorithm. This algorithm will also be useful to establish a connection between our

efficient algorithm and an alternative importance sampling algorithm that could be applied in

some special cases. The second part describes the current algorithms and shows that they do
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not draw from the desired target posterior distribution. The third part develops an efficient

algorithm based on the Gibbs Sampler.

5.1 A Simple Algorithm

Because SS,t() is continuous, the set of all sequences of time-varying structural parameters

satisfying the sign restrictions will be open in the set of all sequences of time-varying structural

parameters. If at least one sequence satisfies the sign restrictions, then the set of sequences

satisfying the sign restrictions will be of positive Lebesgue measure in the set of all sequences.

This justifies algorithms of the following type to accomplish our objective. The idea behind

the algorithm below is to sample several sequences of time-varying orthogonal reduced-form

parameters and then keep only the draws that satisfy the sign restrictions.

Algorithm 1. This algorithm draws from pRC
S ((At,Ft)

T
t=1,ϕ

RC ∣ (yt)
T
t=1,SS((At,Ft)

T
t=1) > 0).

1. Let M > 0 and I > 1 and set i = 1.

2. Draw ((Bi
t,Σ

i
t)

T
t=1,ϕ

i,RC) from the pRC
R ((Bt,Σt)

T
t=1,ϕ

RC ∣ (yt)
T
t=1) distribution.

3. Draw (Qi,m
t )

T
t=1 independently from the uniform distribution over OT

n for 1 ≤m ≤M .

4. Let (Ai,m
t ,Fi,m

t )
T
t=1 = f

−1
h ((B

i
t,Σ

i
t,Q

i,m
t )

T
t=1) for 1 ≤m ≤M .

5. If i < I, let i = i + 1 and return to Step 2.

6. Keep ((Ai,m
t ,Fi,m

t )
T
t=1,ϕ

i,RC) for 1 ≤ i ≤ I and 1 ≤m ≤M , if [SS((A
i,m
t ,Fi,m

t )
T
t=1) > 0] =

1.

Step 2 draws ((Bi
t,δ

i
t,γ

i
t)

T
t=1,ϕ

i,RC) from pRC((Bt,δt,γt)Tt=1,ϕ
RC ∣ (yt)

T
t=1) and sets (Bi

t,Σ
i
t)

T
t=1 =

(Bi
t, (g

RC)−1(δit,γ
i
t))

T
t=1. These draws approximate the desired distribution via a Gibbs Sam-

pler algorithm (see Arias, Rubio-Ramı́rez and Shin, 2023, for details). As mentioned in

Section 4.1, using a different prior over (Bi
t,Σ

i
t)

T
t=1 allows this algorithm to be used for

rotation-invariant time-varying SVARs models. One could use the prior over the time-varying

reduced-form parameters in either Primiceri (2005); Cogley and Sargent (2005) or Bognanni

(2018) by simply changing Step 2 to draw from the distributions over the time-varying

reduced-form parameters defined in those papers.
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Algorithm 1 is very easy to implement. Still, unless the identifying sign restrictions are

limited to a few periods, the number of sequences of orthogonal matrices required to get

sufficient draws that satisfy the sign restrictions is computationally infeasible. To see this,

notice that, for every i, the probability that f−1h (B
i
t,Σ

i
t,Q

i,m
t ) satisfies the restrictions is

less than one for 1 ≤ t ≤ T . Hence, the probability that f−1h ((B
i
t,Σ

i
t,Q

i,m
t )

T
t=1) satisfies the

restrictions converges to zero as T goes to infinity.

5.2 Current Algorithms

Because of the infeasibility of using Algorithm 1 in most applications of interest, cur-

rent algorithms (e.g., Baumeister and Peersman, 2013; Bognanni, 2018; Debortoli, Gaĺı

and Gambetti, 2020) modify Step 3. Let SOR,t(Bt,Σt,Qt) = SS,t(f−1h (Bt,Σt,Qt)) and

On(Bt,Σt) = {Qt ∶ [SOR,t(Bt,Σt,Qt) > 0] = 1}. Current algorithms draw (Qi,m
t )

M
m=1 indepen-

dently from the uniform distribution over On(Bt,Σt) for 1 ≤ m ≤M and 1 ≤ t ≤ T . Given

a draw from the specified posterior over the sequences of reduced-form parameters, this is

implemented by drawing Qt independently from the uniform distribution over On until one

obtains a draw such that Qt ∈ On(Bt,Σt), for 1 ≤ t ≤ T .20 The current algorithms can be

written as follows:

Algorithm 2. This algorithm draws from a posterior distribution of (At,Ft)
T
t=1 conditional

on the sign restrictions.

1. Let I > 1 and set i = 1.

2. Draw ((Bi
t,Σ

i
t)

T
t=1,ϕ

i,RC) from the pRC
R ((Bt,Σt)

T
t=1,ϕ

RC ∣ (yt)
T
t=1) distribution.

3. Draw Qi
t uniformly from the set On(B

i
t,Σ

i
t) for 1 ≤ t ≤ T .

4. Let (Ai
t,F

i
t)

T
t=1 = f

−1
h ((B

i
t,Σ

i
t,Q

i
t)

T
t=1).

5. If i < I, let i = i + 1 and return to Step 2.

20To simplify the exposition, we are assuming that On(Bt,Σt) ≠ ∅ for all (Bt,Σt) for 1 ≤ t ≤ T . The same
argument is valid otherwise, although the discussion is more tedious.
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Step 3 can be done by drawingQt fromOn until obtaining one that satisfies SS,t(f−1h (B
i
t,Σ

i
t,Qt)) >

0 is found. The computational benefit comes from the conditional nature of the prior dis-

tribution for Qt. However, it has an undesirable implication. For any (Bt,Σt), the current

algorithms implicitly define a density p(Qt ∣ Bt,Σt) with respect to the volume measure over

On(Bt,Σt) that is proportional to [SOR,t(Bt,Σt,Qt) > 0]:

p(Qt ∣ Bt,Σt) =
[SOR,t(Bt,Σt,Qt) > 0]

v(On(Bt,Σt))
for 1 ≤ t ≤ T (15)

which demonstrates that current algorithms define a density for the orthogonal matrices

conditional on the reduced-form parameters that are not uniform. To see that, notice that

v(On(Bt,Σt)) depends on the reduced-form parameters. Thus, current algorithms use this

prior:

(
T

∏
t=1
∣ det(At) ∣ )

−(2n+m+1)pRC
R (π(fh((At,Ft)

T
t=1))) ∣ ϕ

RC)

∏
T
t=1 v(On(π(fh(At,Ft)))

, (16)

instead of using pRC
S ((At,Ft)

T
t=1 ∣ ϕ

RC). To see this, the reader should compare Equa-

tions (13) and (16). In particular, in the case of Equation (16) the space of integra-

tion depends on the particular sequence of time-varying reduced-form parameters being

drawn. Hence, the prior implied by the current algorithms does not satisfy Proposi-

tion 3. In this particular version, the posterior implied by Algorithm 2 will misrepre-

sent pRC
S ((At,Ft)

T
t=1,ϕ

RC ∣ (yt)
T
t=1,SS((At,Ft)

T
t=1) > 0), as it will overrepresent sequences

of structural parameters with low ∏
T
t=1 v(On(π(fh(At,Ft))) and it will underrepresent

sequences with high ∏
T
t=1 v(On(π(fh(At,Ft))). Because our objective is to draw from

pRC
S ((At,Ft)

T
t=1,ϕ

RC ∣ (yt)
T
t=1,SS((At,Ft)

T
t=1) > 0), one could use importance sampling

weights proportional to ∏
T
t=1 v(On(π(fh(At,Ft)))

v(On)T to re-sample the outcome of Algorithm 2. How-

ever, as explained in Durbin and Koopman (2002), this is excessively burdensome for the

type of values that T takes in empirical applications.

5.3 A Gibbs Sampler Algorithm

In this section, we present a feasible Gibbs Sampler that draws from the desired target

distribution. Our sampling approach is based on single-move sampling along the lines of Koop

and Potter (2011). The key insight is to draw from a sequence of conditional distributions
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that have the elliptical slice sampling of Murray, Adams and Mackay (2010) as a critical

component. This will allow us to break the infeasibility of Algorithm 1. Our algorithm

generates posterior draws based on the prior distribution that satisfies the conditions in

Proposition 3. We will present the implementation details of the main steps of this algorithm,

relegating the details to Online Appendix I.

Let SRC,t(Bt,δt,γt,Qt) = SS,t((ḡRC○fh)−1(Bt,δt,γt,Qt)) and let [SRC,t(Bt,δt,γt,Qt) > 0]

be the indicator function that equals 1 if the sign restrictions are satisfied at time t and 0 other-

wise. In addition, let [SRC((Bt,δt,γt,Qt)
T
t=1) > 0] =∏

T
t=1 [SRC,t(Bt,δt,γt,Qt) > 0] denote the

collection of sign restrictions and letORC
T = {((Bt,δt,γt,Qt)

T
t=1 ∶ [SRC((Bt,δt,γt,Qt)

T
t=1) > 0] = 1}

be the set of sequences that satisfy the sign restrictions.

The objective is to sample from Equation (14). By the theory in Section 3, this can be

accomplished by sampling from the posterior

pRC((Bt,δt,γt,Qt)
T
t=1,ϕ

RC ∣ (yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0)

defined as:

p((yt)
T
t=1 ∣ (Bt,δt,γt)Tt=1) [SRC((Bt,δt,γt,Qt)

T
t=1) > 0]p

RC((Bt,δt,γt)Tt=1 ∣ ϕ
RC)p(ϕRC)

∫ ∫ORCT
p((yt)

T
t=1 ∣ (Bt,δt,γt)Tt=1)p

RC((Bt,δt,γt)Tt=1 ∣ ϕ
RC)d(Bt,δt,γt,Qt)

T
t=1p(ϕ

RC)dϕRC
,

and then mapping (Bt,δt,γt,Qt)
T
t=1 to (At,Ft)

T
t=1 using the mapping (ḡRC ○ fh)−1. This

procedure is described by Algorithm 3.

Algorithm 3. This algorithm draws from pRC
S ((At,Ft)

T
t=1,ϕ

RC ∣ (yt)
T
t=1,SS((At,Ft)

T
t=1) > 0).

1. Let I > 1 and set i = 1 and assign initial values to (δi−1t ,γi−1
t ,Qi−1

t )
T
t=1,ϕ

i−1,RC.

2. Draw (Bi
t)

T
t=1 from

pRC((Bt)
T
t=1 ∣ (δ

i−1
t ,γi−1

t ,Qi−1
t )

T
t=1,ϕ

i−1,RC , (yt)
T
t=1,SRC((Bt,δ

i−1
t ,γi−1

t ,Qi−1
t )

T
t=1) > 0).

3. Draw (Qi
t)

T
t=1 from

pRC((Qt)
T
t=1 ∣ (B

i
t,δ

i−1
t ,γi−1

t )
T
t=1,ϕ

i−1,RC , (yt)
T
t=1,SRC((B

i
t,δ

i−1
t ,γi−1

t ,Qt)
T
t=1) > 0).
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4. Draw (δit,γ
i
t)

T
t=1 from

pRC((δt,γt)
T
t=1 ∣ (B

i
t,Q

i
t)

T
t=1,ϕ

i−1,RC , (yt)
T
t=1,SRC((B

i
t,δt,γt,Q

i
t)

T
t=1) > 0).

5. Draw ϕi,RC from

pRC(ϕRC ∣ (Bi
t,δ

i
t,γ

i
t ,Q

i
t)

T
t=1, (yt)

T
t=1).

6. Set (Ai
t,F

i
t)

T
t=1 = (ḡ

RC ○ fh)−1((B
i
t,δ

i
t,γ

i
t ,Q

i
t)

T
t=1).

7. If i < I, let i = i + 1 and return to Step 2.

Step 2 draws Bt from pRC(Bt ∣ B−t, (δt,γt,Qt)
T
t=1,ϕ

RC , (yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) >

0) for 1 ≤ t ≤ T . These densities are truncated normal and, hence, standard algorithms

can be used to draw from them. Step 3 is implemented by drawing Qt from pRC(Qt ∣

Q−t, (Bt,δt,γt)Tt=1,ϕ
RC , (yt)

T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0) for 1 ≤ t ≤ T . These densities are

truncated uniform over the set of orthogonal matrices
[SRC,t(Bt,δt,γt,Qt)>0]

v(On(Bt,(gRC)−1(δt,γt))) for 1 ≤ t ≤ T

and, hence, standard algorithms can be used to draw from them. Step 4 is implemented by

drawing (δt,γt) from pRC(δt,γt ∣ δ−t,γ−t, (Bt,Qt)
T
t=1,ϕ

RC(yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0)

for 1 ≤ t ≤ T . We use the elliptical slice sampler to do that. The key to the approach is

the fact that pRC(δt,γt ∣ δ−t,γ−t,ϕRC) = pRC(δt ∣ δ−t,ϕRC)pRC(γt ∣ γ−t,ϕRC) is normal for

1 ≤ t ≤ T . When it is not normal, one may need to use a different strategy for posterior

sampling, and we illustrate how this can be approached in Section I.5 of the Online Appendix.

Step 5 is based on a standard hyperparameter updating. All the details are described in

Online Appendix I. The fundamental insight of our Gibbs Sampler is that we need to condition

on SRC((Bt,δt,γt,Qt)
T
t=1) > 0 at every step. Without such conditioning at every step, our

approach will not be drawing from the correct posterior distribution. Related to this point,

it is important to notice that the density used in Step 3 is the same density displayed in

Equation (15). This highlights that readers should not infer that any use of such a density is

always incorrect; the key issue is how the density is used in the context of the algorithm.
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6 The Current Monetary Policy Tightening Cycle

This section illustrates our methodology by analyzing the monetary policy tightening cycle

that began on March 16, 2022. Since lift-off, policy discussions have revolved around the

effects of interest rate increases on economic activity and inflation. As Powell (2023) recently

noted, doing too little or too much could cause unnecessary harm to the economy. Motivated

by this discussion, we use our methodology to tackle three questions: (i) How did the Federal

Reserve respond to the state of the economy during the current policy tightening cycle? (ii)

How does the Federal Reserve’s performance during the tightening cycle compare with more

dovish or hawkish monetary policy stances? (iii) Was the Federal Reserve behind the curve

as suggested by Summers (2021)? And, if so, at what cost?

6.1 Data and Model Specification

We use an RC-SVAR specified at a quarterly frequency that includes output growth (as

measured by the log difference of real GDP), core inflation (as measured by the log difference

of the price index of personal consumption expenditures excluding food and energy), the

federal funds rate, the growth in the stock of money (as measured by the log difference of M2),

and Moody’s seasoned Baa corporate bond yield relative to the yield on 10-year Treasury

constant maturity. Often, we will refer to the latter as the credit spread. The sample runs

from 1959:Q1 until 2023:Q2. As typically done when working with time-varying SVARs at

a quarterly frequency, we include a constant and two lags. Thus, we have n = 5, p = 2, and

m = 11 in this model. Appendix B provides a detailed description of the data sources.

Our prior over ϕRC is described in Appendix C. For ease of exposition, we present a

summary. We set mβ1 equal to the maximum likelihood estimate of a constant parameter

reduced-form VAR—featuring the same variables, constant, and lags as our time-varying

model—based on the first T0 = 40 observations available in our sample. We denote such an

estimate by B̂. We set Vβ1 equal to 4 times the unbiased estimator for the variance of B̂,

as in Primiceri (2005). To set the values for mδ1 , mγ1 , Vδ1 , and Vγ1 , first we let Σ̂ denote

the maximum likelihood estimate of the variance of the residuals. Second we use the Delta

method to set the values formδ1 , Vδ1 ,mγ1 , and Vγ1 . The variances Vδ1 and Vγ1 are set equal
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to 4 times the variance implied by the Delta method. Turning to the parameters governing

the step sizes of the processes for βt, δt, and γt (Vβ, Vδ, and Vγ respectively), we impose

an Inverse-Wishart prior for Vβ and an Inverse-Gamma prior for each of the diagonal entries

of Vδ and Vγ . The scale parameters for these priors are chosen to be constant fractions

of the maximum likelihood estimate variances for β, δ, and γ in the constant parameter

reduced-form VAR over the training sample described above. We follow Primiceri (2005)

when setting the degrees of freedom (for the Inverse-Wishart prior) and the shape parameters

(for the Inverse-Gamma priors); they are set so that the priors are diffuse and uninformative.

Our results are based on one independent chain obtained using Algorithm 3. The chain

consists of 1,000,000 draws, we keep one every 50-th draw of the structural parameters. Of

the resulting 20,000 draws, we discard the first 5,000 draws. Online Appendix II shows some

convergence results.

6.2 Identification

We identify the parameters of one of the RC-SVAR equations, which we label the monetary

policy equation, by incorporating the insights of the identification strategies proposed by

Uhlig (2005) and Arias, Caldara and Rubio-Ramı́rez (2019), and at the same time allowing

for time variation in both the systematic component of monetary policy and the variance of

the monetary policy shock. This is critical because the Federal Reserve’s reaction function to

economic conditions has undoubtedly changed over time. For example, in October 1979, the

Fed abandoned the federal funds rate as its main policy instrument and adopted non-borrowed

reserves targeting to fight inflation. Similarly, the federal funds rate took a secondary role in

December 2008 when it hit the effective zero lower bound (ZLB), and quantitative easing

(QE) took center stage. In addition, changes in Federal Reserve chairs and the composition

of the Federal Open Market Committee (FOMC) may have led to changes in the reaction

function of monetary policy over time (see, e.g., Coibion and Gorodnichenko, 2011).

To address these changes, we consider an identification scheme that disciplines the

systematic component of monetary policy during periods in which the federal funds rate can

be deemed to have been the primary policy tool and that remains agnostic during periods in

which the Fed targeted non-borrowed reserves or was constrained by the effective ZLB. When
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the federal funds rate is not the main policy instrument, the identifying restrictions follow

Uhlig (2005) and concentrate on a minimal number of impulse responses. When the federal

funds rate is the main policy instrument, we maintain the restrictions on impulse responses

and, in addition, we impose restrictions on the contemporaneous structural parameters of the

monetary policy equation following Arias, Caldara and Rubio-Ramı́rez (2019).21 Importantly,

the federal funds rate is not the main policy instrument during the whole sample; hence, the

restrictions on the contemporaneous structural parameters of the monetary policy equation

cannot be imposed for all the periods.

Without loss of generality, we assume that the first equation of the SVAR is the monetary

policy equation and, abstracting from the constant and lagged variables, we write it as

rt = ψ∆y,t∆yt + ψπ,tπt + ψ∆m,t∆mt + ψcs,tcst
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Systematic Component

+σr,tεr,t
´¹¹¹¹¸¹¹¹¹¶
Shock

, (17)

where rt is the federal funds rate, ∆yt is output growth, πt is inflation, ∆mt is the growth rate

of money, cst is the corporate credit spread, εr,t is the monetary policy shock, ψ∆y,t = −at,11a−1t,31,

ψπ,t = −at,21a−1t,31, ψ∆m,t = −at,41a−1t,31, ψcs,t = −at,51a−1t,31, and σr,t = a
−1
t,31, with at,ij denoting the

(i, j) entry of At. Sometimes we will refer to the coefficients (ψ∆y,t, ψπ,t, ψ∆m,t, ψcs,t) as

contemporaneous elasticities. Importantly, this equation clarifies that the monetary policy

shock represents a deviation from a policy rule. Equation (17) is enough to describe the

contemporaneous elasticities at the center stage of the monetary SVAR literature (e.g.,

Bernanke and Mihov, 1998). However, there are cases in which the interest is in using the

monetary policy equation to compute the long-run response of the federal funds rate to a

permanent increase in inflation. When computing these long-run responses, we will also

need to consider ψ
(1)
r,t = ft,41a

−1
t,31, ψ

(2)
r,t = ft,91a

−1
t,31, ψ

(1)
π,t = ft,31a

−1
t,31 and ψ

(2)
π,t = ft,81a

−1
t,31, with ft,ij

denoting the (i, j) entry of Ft and ψ
(1)
π,t and ψ

(2)
π,t denoting the effect of πt−1 and πt−2 on rt,

respectively, and ψ
(1)
r,t and ψ

(2)
r,t denoting the effect of rt−1 and rt−2 on rt, respectively.

Following Primiceri (2005), we define Ψ
(h)
r,t , with h > 0, to be the cumulative response of

the fed funds rate in period h+ t after a permanent 1 percentage point increase in inflation in

21Wolf (2020) shows that restricting the systematic component of monetary policy can avoid shock-
masquerading issues inherent to set identification with too few sign restrictions.

24



period t. More specifically, we define:

Ψ
(h)
r,t = ψ

(1)
r,t Ψ

(h−1)
r,t + ψ

(2)
r,t Ψ

(h−2)
r,t + ψ

(2)
π,t + ψ

(1)
π,t + ψπ,t for h > 2,

where Ψ
(2)
r,t = ψ

(1)
r,t Ψ

(1)
r,t + ψ

(1)
π,t + ψπ,t and Ψ

(1)
r,t = ψπ,t and we approximate the long-run response

of the fed funds rate to inflation by Ψ
(60)
r,t . Let us now introduce Restrictions 1 and 2:

Restriction 1. Following a monetary policy shock, the contemporaneous impulse responses

of inflation and the growth rate of the stock of money are negative, and the impulse response

of the federal funds rate is positive.

Restriction 1, motivated by Uhlig (2005), is imposed for the entire sample. Uhlig’s

(2005) celebrated identification scheme consists of imposing minimal sign restrictions on

impulse responses motivated by economic theory without restricting the question of interest.

Accordingly, when using his approach to study the economic effects of monetary policy shocks

on output, he assumed that a monetary policy shock that increases the federal funds rate does

not cause an increase in prices or non-borrowed reserves. In line with his identification scheme,

we assume that the contemporaneous impulse response of inflation and the growth rate of the

stock of money is negative in response to a monetary policy shock that increases the federal

funds rate upon impact.22 The cost of using such a minimal number of restrictions is that

some impulse responses consistent with Restriction 1 could be associated with an implausible

systematic component of monetary policy or be subject to the shock masquerading issue

highlighted by Wolf (2020).23

Restriction 2. Consider the following restrictions on the contemporaneous coefficients of

Equation (17), ψ∆y,t ∈ (0,4), ψπ,t ∈ (0,4), ψ∆m,t ∈ (0,4), and ψcs,t ∈ (−4,0). In addition, we

restrict the long-run response of the fed funds rate to inflation to be positive and respect the

Taylor principle since the mid-1980s.

Restriction 2, inspired by Arias, Caldara and Rubio-Ramı́rez (2019), addresses these

concerns by restricting the contemporaneous rule coefficients as well as the long-run response

22The length of the restrictions could be extended for one quarter to match the restricted horizons in
Uhlig (2005). We impose only one period to keep the restrictions to the smallest number possible.

23See also Kilian and Murphy (2012), who highlighted a related issue in the global market for crude oil.
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of the federal funds rate to inflation. The signs and bounds on the contemporaneous reaction

of the federal funds rate to output growth and inflation follow directly from Arias, Caldara and

Rubio-Ramı́rez (2019). While the signs of these responses can be viewed as uncontroversial,

the upper limit of the bounds is somewhat arbitrary. We set it to 4 to strike a balance between

using conservative bounds and ruling out implausible monetary policy behavior. Turning

to the restriction on the response of the federal funds rate to the growth rate of money, we

impose a positive sign following the work of Leeper and Zha (2003). The upper bound is large

enough to encompass the point estimate of the elasticity of the federal funds rate to money in

their model. Finally, the restriction on the response of the federal funds rate to the corporate

credit spread is inspired by the work of Caldara and Herbst (2019), who highlighted that this

response is crucial to address misspecification concerns in the monetary policy equation. In

line with their estimates, we restrict this response to be negative and impose a lower bound

to rule out implausible large negative responses. This bound is such that the range of possible

values for ψcs,t includes the 90 percent credible sets for this coefficient reported by Caldara

and Herbst (2019).

In addition to restricting the short-run elasticities, we restrict the long-run response of the

fed funds rate to inflation to be positive and to respect the Taylor principle since 1984Q1. The

former is inspired in the New Keynesian framework. The rationale for the Taylor principle

restriction is inspired in Clarida, Gaĺı and Gertler (2000); Lubik and Schorfheide (2004),

pointing to a shift in the long-run response of the policy rate to inflation in the early 1980s.

Restriction 2 is imposed on all the periods in our sample except for 1979Q4:1982Q4,

2009Q1:2015Q3, and 2020Q2:2021Q4. The first period corresponds to changes in monetary

policy announced by Chair Volcker in late 1979. The second and third periods correspond to

the QE policies around the Great Recession and COVID-19. The rationale for not imposing

Restriction 2 during these three periods is as follows. In the first of these periods, the

Federal Reserve explicitly targeted non-borrowed reserves. Lindsey et al. (2013) provides an

extensive analysis of the New Operating Procedures announced by Chair Volcker on October

6, 1979. Their analysis highlights that the credibility of the prevailing discount rate framework

came under severe stress following a near-split decision on the discount-rate vote and that

the FOMC considered that targeting non-borrowed reserves would provide it the necessary
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flexibility to control inflation by allowing significant changes in interest rates. By October

1982, with inflation in a sustained downward trajectory, the Fed abandoned non-borrowed

reserves as the main policy instrument. The abandonment was communicated less clearly

than its adoption, and the Fed was vague about the details of its operating procedures

for most of the 1980s and early 1990s (see, e.g., Lindsey, 2003). Chappell, McGregor and

Vermilyea (2005) describe the post-1982 conduct of monetary policy as indirect targeting of

the federal funds rate, which gradually moved to direct targeting of the federal funds rate as

made clear by the FOMC statement of March 1997.

The post-1982 period of interest rate targeting was interrupted when the Fed lowered

interest rates to the 0 to 0.25 percent target range, hitting its effective ZLB, and embarked on

a period of QE policies to address the negative economic consequences of the Great Recession

of 2007 to 2009. The conduct of monetary policy consistent with Equation (17) reemerged

only after the federal funds rate lift-off was announced in December 2015. Similarly, the

COVID-19 pandemic induced a new period of QE policies and kept the federal funds rate at

its effective ZLB from 2020Q2 until 2021Q4.

6.3 Systematic Component and Monetary Policy Shock

In this section, we show the systematic component of monetary policy and the monetary

policy shock. Let us begin with the former. Figure 1 shows the contemporaneous elasticities

of the federal funds rate to output growth, inflation, money growth, and the credit spread,

from 1969Q4 until 2023Q2 except for those periods in which Restriction 2 is not imposed. The

solid blue lines depict the point-wise posterior medians, and the solid gray lines represent the

68 percent point-wise posterior probability bands. As seen, the contemporaneous elasticity

of the federal funds rate to output growth exhibits three peaks. The first occurred in 1974

during the chairmanship of Arthur Burns, and it captures the sharp decline in the federal

funds rate in response to the 1974-1975 recession. The second peak occurred in 1983-1984

during the chairmanship of Paul Volcker. This may come as a surprise, as his tenure at the

Fed is commonly viewed as squarely focused on combating inflation. Even so, during this

period, the annualized real growth rate of GDP averaged 6.8 percent. To the extent that

the FOMC under Volcker’s leadership viewed high growth as posing a risk to the progress
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they had made on the inflation front, it is natural to find that the federal funds rate was

more sensitive to output growth during this period. The third peak occurred in 2001 during

the chairmanship of Alan Greenspan when the Fed cut interest rates sharply in the face of

the 2001 recession: In December 2000, the federal funds rate was 6.4 percent, and it ended

2001 at 1.8 percent. Outside of these peaks, the contemporaneous elasticities of the federal

funds rate have been between 0.01 and 0.15, averaging about 0.1, implying that, other things

constant, a one percentage point increase in annualized GDP growth would lead to a rise of

0.1 percent in the federal funds rate (annualized).

Turning to the contemporaneous elasticity of the federal funds rate to inflation, in line

with the conventional wisdom, we find that the Fed reacted more aggressively to inflation in

the early 1980s than during the Great Moderation. However, we also find high elasticities in

the early 1970s under the first years of Burns’s tenure and around the 2000s under Greenspan.

The former suggests that through the lens of our model, the political pressure that President

Nixon exerted on the Fed during the early 1970s (see, e.g., Drechsel, 2024) did not manifest

in a lower response to inflation. Instead, as we will discuss below, such dovish pressure

appears to be reflected in the reaction of the federal funds rate to the corporate credit spreads.

The high elasticities around 1999-2000 are consistent concerns about inflationary pressures

mentioned in the FOMC statement of the time. When looking at the magnitude of the

responses throughout the estimation sample, we find that while, on average, the annualized

federal funds rate increased by 0.3 percentage points in response to a one percentage point

increase in annualized core inflation, the range of responses is wide. For example, these

responses were as low as 0.14 during Janet Yellen’s leadership.

Regarding the response of the federal funds rate to the growth rate of money, let us

highlight that, on average, the elasticities are larger before 1979Q4 than after 1982Q4. This

is consistent with the view that policymakers in the early 1980s were concerned with the

reliability of monetary aggregates. For example, Lindsey et al. (2013) emphasize the following

quote from Chair Volcker obtained from an FOMC transcript from January 1980: “I would

remind you that nothing that has happened—or that I’ve observed recently—makes the

money/GNP relationship any clearer or more stable than before. Having gone through all

these redefinition problems, one recognizes how arbitrary some of this is. It depends on how
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Figure 1: Contemporaneous Elasticities

you define [money]”.

Finally, we discuss the contemporaneous elasticity of the federal funds rate to corporate

credit spreads. Analogously to Caldara and Herbst (2019), we find a significant reaction to

changes in credit spreads. Nevertheless, we also find evidence of notable time variation in the

magnitude of this coefficient. Interestingly, as highlighted above, the noticeable change in the

contemporaneous elasticity of corporate credit spreads could be attributed to the political

pressure faced by the Fed during the early 1970s. The coefficient moved from about −1.3

at the beginning of Burns’s tenure to −2 at the end of Nixon’s presidency. Hence, the tight

credit spreads of the early 1970s induced the largest dovish pressure on the funds rate in

our sample. Subsequently, it is clear that from the mid-1970s until the onset of the Great

Recession, the Fed gradually became less responsive to corporate credit spreads. Perhaps not

too surprisingly, the downward trend in responsiveness ended after the financial crisis. By

mid-2023, the response was about -1.2, which aligns with the posterior median estimates for
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the 1990s and early 2000s. While Caldara and Herbst (2019) focuses on the period 1994-2007,

our results indicate that corporate credit spreads played a potentially even more critical role

in the conduct of monetary policy during the 1970s and 1980s.

Figure 2: Standard Deviation of the Monetary Policy Shock

Figure 2 shows the standard deviation of the monetary policy shock. In line with other

estimates in the literature, it has declined since the early 1980s. Notably, the clear evidence

of time variation in the systematic component of monetary policy and the standard deviation

of the monetary policy shock suggests that a time-varying structural model could be critical

to studying the conduct of monetary policy in the U.S. over a long sample.

6.4 Dissecting the 2022-2023 Tightening Cycle

As outlined in the introduction, it is widely acknowledged that the Federal Reserve initiated

a tightening of monetary policy in early 2022 due to inflation concerns (see Romer and

Romer, 2023). We now examine the degree to which the unexpected changes in the federal

funds rate from the second quarter of 2022 to the second quarter of 2023 are attributable to

either the systematic component of monetary policy or monetary policy shocks. Figure 3

presents our model-based forecasts for the federal funds rate, output growth, and inflation

over the period 2022Q2-2023Q2, using data from 2022Q1. In addition, the figure shows the

cumulative contribution of the structural shocks to the forecast error in these projections.

30



The forecast and the cumulative shock contributions are constructed using point-wise means

conditional on the distribution of structural parameters corresponding to 2022Q1. The former

are represented by dotted lines and the latter are represented by the colored bars. We depict

the contribution of monetary policy shocks using red bars, while the contributions from

non-monetary policy shocks are shown in yellow bars. For each quarter between 2022Q2 and

2023Q2, the gap between the data (shown by solid lines) and the forecast is equal to the sum

of the yellow and red bars.
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Figure 3: Monetary Policy versus Non-Monetary Policy Shocks

The forecast for the federal funds rate shows that the model significantly under-predicted its

trajectory. In contrast, the projection for output growth and inflation was remarkably accurate.

We contrast our model with the median predictions from the 2022Q1 and 2022Q2 Survey

of Professional Forecasters (SPF).24 The 2022Q1 SPF participants are at an informational

disadvantage relative to our model, while the 2022Q2 SPF participants are at an informational

advantage compared to our model. The main takeaway from this comparison is that the

model forecasts is broadly in line with the SPF for the case of the federal funds rates and

output growth, while the SPF does worse than the model when forecasting inflation.

Looking at the decomposition of the federal funds rate, it is clear that most of the

unexpected changes in the federal funds rate can be attributed to the systematic component

of monetary policy. In particular, interest rates increased beyond what could have been

predicted in 2022Q1, mainly as a systematic response to non-monetary policy shocks. This

can be seen in the figure by comparing the height of the yellow bars to the height of the

red bars. The yellow bars represent the contribution of the systematic part of monetary

24We interpret the SPF projections for the 3-month T-bill rate as projections for the federal funds rate.
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policy to unexpected changes in the federal funds rate. In contrast, the red bars represent the

contribution of the monetary policy shocks. Consequently, the lion’s share of the unpredictable

increases in the interest rate can be attributed to the Fed’s policy reaction function. This is in

line with the findings of the literature when analyzing other periods, which argues that most

of the variation in policy instruments is due to the systematic component of policy and not

monetary policy shocks. Even so, monetary policy shocks also played a role, amounting to

about 150 basis points of the unexpected change in the federal funds rate by 2023Q2. Table 1

shows the details of this decomposition for the case of the fed funds rate. As shown in Figure

2022Q2 2022Q3 2022Q4 2023Q1 2023Q2
Predictable 0.15 0.37 0.64 0.93 1.20
Unpredictable due to Systematic 0.29 0.92 1.67 2.12 2.27
Unpredictable due to MP Shocks 0.34 0.89 1.34 1.47 1.52
Federal Funds Rate 0.77 2.19 3.65 4.52 4.99

Table 1: Federal Funds Rate Decomposition (p.p.)

3, non-monetary policy shocks are also the main contributor to the unexpected changes

in output growth and inflation: since the second half of 2022 non-monetary policy shocks

caused the economy to run hotter (larger than expected output growth and inflation) than

predicted. This explains why the systematic part of monetary policy contributed positively

to the unexpected change in the fed fund rate.

Our analysis restricts monetary shocks to be one-off deviations from the estimated

monetary policy equation; intuitively, however, such deviations could be either transitory or

persistent, and differentially so at different points in time. Hence, it is natural to ask how

our conclusions on the importance of systematic monetary policy versus monetary shocks in

explaining nominal interest rate movements post-2021 are affected by allowing for multiple

distinct monetary policy shocks. To assess this, Online Appendix III re-visits our analysis by

disentangling exogenous variation at the short end and long end of the yield curve. We find

that the share of the unexpected changes in the federal funds rate that can be attributed to

non-monetary policy shocks is in line with the results presented in this section. In addition,

the monetary policy shock in the baseline is deconstructed in similar proportions into the short

end and long-term monetary policy shocks: the sum of both short- and long end monetary
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policy shocks seems to be equally important contributors to the unexpected variations in the

variables under analysis than the specification featuring the term spread.

6.5 Policy Counterfactual Simulations

One of the benefits of considering a structural model is the ability to look at the effects of

counterfactual experiments that change the structural parameters in the monetary policy

equation. For instance, Sims and Zha (2006a) look at impulse responses to shocks in an SVAR

where the estimated policy equation is replaced by one in which the monetary authority

is unresponsive to other variables in the system. Similarly, Primiceri (2005) conducts an

experiment he calls “planting Greenspan into the 1970s.” The idea of such an experiment is

to replay history, drawing the parameters of the policy rule in the 1970s from their posterior

in 1991-1992, to assess the consequences of a change in the systematic policy component.

Building on this tradition, we produce two types of counterfactuals. In the first type, we

modify the systematic component of monetary policy, keeping other aspects of the model

unchanged. This approach aligns with the framework presented in Sims and Zha (2006a),

wherein rational agents cannot comprehend or anticipate policy changes. In the second type,

we generate counterfactuals inspired by the work of McKay and Wolf (2023) and Caravello,

McKay and Wolf (2024); these address the expectational concerns of the Lucas critique.

The results obtained under both types of counterfactual simulations are similar. We

will focus on the first type and discuss the results obtained with the second type in Online

Appendix IV. More specifically, we replay history since 2022Q2, assuming that the FOMC

would have responded to contemporary inflation differently than what would be prescribed by

our estimated policy rule. In the first simulation, which we label Hawkish Fed, we replace the

model’s estimated reaction to contemporaneous inflation with a twice as large response. In

the second simulation, which we label Dovish Fed, we replace the model’s estimated reaction

to contemporaneous inflation with a response that is half as large.

Figure 4 shows the point-wise medians and the 68 percent point-wise probability bands

for each counterfactual. Focusing on posterior medians, through the lens of our model, under

the Dovish Fed counterfactual, the economy would have marginally overheated with output

increasing above the pace implied by the U.S. Congressional Budget Office’s estimates of
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Figure 4: Counterfactuals

potential GDP, and inflation would have run persistently above 5 percent. Under the Hawkish

Fed counterfactual, inflation would have quickly decreased in terms of economic activity at

a relatively small cost. In the Hawkish counterfactual, the output in the second quarter of

2023 would have been about 0.5 percent lower. When looking at the output level at risk, the

lower envelope of the 68 percent probability bands shows that the cost in terms of output

could have been as high as 1.7 percent.

Let us highlight that variations in the slope of the Phillips curve could influence the

transmission mechanisms of monetary policy, potentially altering the trade-offs between

output and inflation. Our counterfactual results are coherent with price responses being

much larger at the end of the sample than in the mid-seventies, suggesting Chair Burns faced

a more adverse trade-off than Chair Powell.25 In addition, Online Appendix III shows that

the output loss associated with the Hawkish counterfactual is somewhat larger when we use

a monetary policy equation centered around the short end of the yield curve.

6.6 Robustness to Prior

The results in Section 3 demonstrate that to operate within the class of rotation-invariant

time-varying SVARs models described in this paper, a researcher must use a uniform prior

over (Qt)
T
t=1 with respect to the volume measure over OT

n . However, as emphasized by

Baumeister and Hamilton (2015); Giacomini and Kitagawa (2021), it is crucial to recognize

25This is shown in Online Appendix V where we compare the impulse responses of output and prices in
1975Q1 and 2022Q1. We thank a referee for bringing this point to our attention.
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Figure 5: Identified Sets for Counterfactuals

that sign restrictions yield identified sets, and the outcomes are influenced not only by these

restrictions but also by the prior imposed on the sequence of orthogonal rotation matrices.

To address this, we assess the sensitivity of the reported policy counterfactual simulations

to the choice of the uniform prior. Specifically, we examine the identified sets associated

with Figure 4 at the value of the point-wise posterior median sequence of reduced-form

parameters.26 The shadowed areas in Figure 5 represent the point-wise identified set. The

figure shows two important things: (1) the identified sets are much wider than the probability

bands and (2) the main finding of the paper is robust to reporting identified sets.

The identified sets can naturally be wider than our reported probability bands, as they

represent the domain of the counterfactual outcomes in the absence of reduced-form parameter

uncertainty. Although with a larger uncertainty, the identified sets still tell us that under

the Dovish Fed counterfactual, the economy would have marginally overheated and inflation

would have been much higher while, under the Hawkish Fed counterfactual, inflation would

have been remarkably lower with a set of likely outcomes for output broadly similar to those

under the Dovish counterfactual.

26That is, we report the point-wise range of counterfactual outcomes that are observationally equivalent to
the point-wise medians presented in Figure 4. Conditional on the point-wise posterior median sequence of
reduced-form parameters, we simulate 50,000 sequences of orthogonal matrices that satisfy the sign restrictions.
We eliminate any draws that imply negative interest rates. These represent the 0.6 percent of the total
number of draws.
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6.7 Was the Fed Behind the Curve?

Thus far, our analysis has revolved around understanding the 2022-2023 tightening cycle since

its onset. This section focuses on whether the Federal Reserve was late to increase interest

rates. This is an interesting question because, in early 2021, influential economists expressed

concerns that the American Rescue Plan Act (signed into law on March 11, 2021) could

result in a surge of inflation not seen since the 1970s unless the Federal Reserve responded to

the program. Figure 6 shows our model-based forecasts for 2021Q2:2021Q4 based on 2021Q1

data (dotted line). In addition, the figure shows the cumulative contribution of structural

shocks to the unexpected change in the federal funds rate for each quarter from 2021Q2 until

2021Q4. As above, we plot monetary policy shocks (red bars), and the rest of the structural

shocks are aggregated into a non-monetary policy shocks category (yellow bars). Forecast and

shock contributions are constructed using point-wise means conditional on the distribution of

structural parameters corresponding to 2021Q1.
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Figure 6: Monetary Policy versus Non-Monetary Policy Shocks

Let us begin by discussing the point-wise mean forecasts. The RC-SVAR predicted an

earlier-than-realized lift-off for the federal funds rate: the model expected the funds rate to

be nearly 0.6 percent by the end of 2021. This projection was associated with a prediction for

output growth of about 4 percent from 2021Q1 until 2021Q4 and a prediction for inflation of

about 3 percent throughout the same forecast horizon. Regarding the shock decomposition,

the cumulative unexpected change in the federal funds rate is driven by expansionary monetary

policy shocks, supporting the view that the monetary policy stance was accommodative and

that the FOMC fell behind the curve during this period. The inflationary consequences of
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these actions can be seen in the cumulative decomposition of the unexpected change in core

inflation: monetary policy shocks on average contributed about 0.6 percentage points to

annualized core inflation during the period under analysis. The remaining and larger share of

the unexpected change in inflation can be attributed to non-monetary policy shocks. Thus,

interestingly, we find that although the Fed was running behind the curve, this was not the

primary factor underlying the inflation run-up. The relative contribution of monetary policy

shocks to the unexpected change in the output growth rate by the end of the forecast horizon

(2021Q4) is relatively small.

7 Conclusion

The theory developed in this paper can be extended in multiple directions. First, it offers

a path forward to researchers interested in conducting empirical work using time-varying

SVARs with priors that assign the same density to observationally equivalent sequences of

structural parameters. Second, the techniques can be adapted to consider zero restrictions,

provided that one considers the volume elements when inducing priors over sequences of

structural parameters. This extension is not straightforward since these volume elements are

more intricate than the constant parameters case considered by Arias, Rubio-Ramı́rez and

Waggoner (2018). Third, exploring the role of inference about the fixed parameters is another

interesting line of research. Finally, given that our methodology is compatible with a wide

range of time-varying models, it could be fruitful to conduct marginal likelihood comparisons

across them conditional on the identifying restrictions.

References

Aastveit, K. A., F. Furlanetto, and F. Loria (2023). Has the Fed Responded to House and

Stock Prices? A Time-Varying Analysis. Review of Economics and Statistics 105 (5),

1314–1324.

Amir-Ahmadi, P., C. Matthes, and M.-C. Wang (2016). Drifts and Volatilities Under

37



Measurement Error: Assessing Monetary Policy Shocks over the Last Century. Quantitative

Economics 7 (2), 591–611.

Archakov, I. and P. R. Hansen (2021). A New Parametrization of Correlation Matrices.

Econometrica 89 (4), 1699–1715.

Arias, J. E., D. Caldara, and J. F. Rubio-Ramı́rez (2019). The Systematic Component of

Monetary Policy in SVARs: An Agnostic Identification Procedure. Journal of Monetary

Economics 101, 1–13.

Arias, J. E., J. F. Rubio-Ramı́rez, and D. F. Waggoner (2018). Inference Based on Structural

Vector Autoregressions Identified with Sign and Zero Restrictions: Theory and Applications.

Econometrica 86 (2), 685–720.

Arias, J. E., J. F. Rubio-Ramı́rez, and M. Shin (2023). Macroeconomic Forecasting and Vari-

able Ordering in Multivariate Stochastic Volatility Models. Journal of Econometrics 235 (2),

1054–1086.

Asai, M. and M. McAleer (2009). The Structure of Dynamic Correlations in Multivariate

Stochastic Volatility Models. Journal of Econometrics 150 (2), 182–192.

Baumeister, C. and J. D. Hamilton (2015). Sign Restrictions, Structural Vector Autoregres-

sions, and Useful Prior Information. Econometrica 83 (5), 1963–1999.

Baumeister, C. and G. Peersman (2013). Time-Varying Effects of Oil Supply Shocks on the

US Economy. American Economic Journal: Macroeconomics 5 (4), 1–28.

Bernanke, B. S. and I. Mihov (1998). Measuring Monetary Policy. Quarterly Journal of

Economics 113 (3), 869–902.

Bognanni, M. (2018). A Class of Time-Varying Parameter Structural VARs for Inference

Under Exact or Set Identification. Working Paper 18-11, Federal Reserve Bank of Cleveland.

Brunnermeier, M., D. Palia, K. Sastry, and C. Sims (2021). Feedbacks: Financial Markets

and Economic Activity. American Economic Review 111, 1845–1879.

38



Caldara, D. and E. Herbst (2019). Monetary Policy, Real Activity, and Credit Spreads: Evi-

dence from Bayesian Proxy SVARs. American Economic Journal: Macroeconomics 11 (1),

157–92.

Caravello, T. E., A. McKay, and C. K. Wolf (2024). Evaluating Policy Counterfactuals: A

VAR-Plus Approach. Working Paper 32988, National Bureau of Economic Research.

Chan, J. C., G. Koop, and X. Yu (2021). Large Order-Invariant Bayesian VARs with

Stochastic Volatility. arXiv preprint arXiv:2111.07225 .

Chappell, H. W. J., R. R. McGregor, and T. A. Vermilyea (2005). Committee Decisions on

Monetary Policy: Evidence from Historical Records of the Federal Open Market Committee.

The MIT Press.
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Appendix

A Proofs

Proof of Proposition 1. The likelihood is given by p((yt)
T
t=1 ∣ (At,Ft)

T
t=1,ϕ) = ∏

T
t=1 p(yt ∣

xt,At,Ft), where p(yt ∣ xt,At,Ft) is Gaussian with mean x′tFtA
−1
t and variance (AtA

′
t)
−1.

So, if there exists (Qt)
T
t=1 ∈ O

T
n such that (Ãt, F̃t)

T
t=1 = (AtQt,FtQt)

T
t=1, then the likelihoods at

((At,Ft)
T
t=1,ϕ) and ((Ãt, F̃t)

T
t=1, ϕ̃) are equal for all (yt)

T
t=1. Thus, (At,Ft)

T
t=1 and (Ãt, F̃t)

T
t=1

are observationally equivalent. Now assume that (At,Ft)
T
t=1 and (Ãt, F̃t)

T
t=1 are observationally

equivalent. Again, because p(yt ∣ xt,At,Ft) is Gaussian with mean x′tFtA
−1
t and variance

(AtA
′
t)
−1 and p(yt ∣ xt, Ãt, F̃t) is Gaussian with mean x′t F̃tÃ

−1
t and variance (ÃtÃ

′
t)
−1, it

must be the case that (AtA
′
t)
−1 = (ÃtÃ

′
t)
−1 and x′tFtA

−1
t = x

′
t F̃tÃ

−1
t . The former implies

that (A−1t Ãt)(A
−1
t Ãt)

′ = In, so that Qt ≡ A−1t Ãt ∈ On, or equivalently, Ãt = AtQt, for

Qt ∈ On and 1 ≤ t ≤ T . The latter implies that it must be the case that x′t(FtQt −F̃t) = 0

for almost every xt. Because, the support of the initial conditions, (y0,⋯,y1−p), is full, the

span of the support of x1 is all of Rm. Thus, the span of the support of xt is all of Rm, for

1 ≤ t ≤ T . Thus, F̃t = FtQt for 1 ≤ t ≤ T .

42



Proof of Proposition ??. To prove the proposition, we will show that the priors over the

time-varying structural parameters implied by models with heteroskedastic structural shocks

do not satisfy Equation (3). Implicit in Equation (3) is the fact that if pS((At,Ft)
T
t=1 ∣ ϕ) > 0,

then pS((AtQt,FtQt)
T
t=1 ∣ ϕ) > 0, for every (Qt)

T
t=1 ∈ O

T
n . For models with heteroskedastic

structural shocks, the prior pS((At,Ft)
T
t=1 ∣ ϕ) must be zero unless there exists A, F, and

a sequence of diagonal matrices with positive diagonal, (Ψt)
T
t=1, such that (At,Ft)

T
t=1 =

(AΨ
− 1

2
t ,FΨ

− 1
2

t )
T
t=1. In particular, if the prior is positive then it must be the case that

A−11 At = Ψ
1
2
1 Ψ

− 1
2

t is diagonal for 1 ≤ t ≤ T . Suppose that pS((AΨ
− 1

2
t ,FΨ

− 1
2

t )
T
t=1) > 0.

Let (Qt)
T
t=1 ∈ O

T
n be any sequence such that Q1 ∈ On is not diagonal and Qt = In, for

2 ≤ t ≤ T . It cannot be the case that pS((AΨ
− 1

2
t Qt,FΨ

− 1
2

t Qt)
T
t=1) > 0 because, for 2 ≤ t ≤ T ,

(AΨ
− 1

2
1 Q1)

−1(AΨ
− 1

2
t Qt) =Q

′
1Ψ

1
2
1 Ψ

− 1
2

t , which is not diagonal.

Proof of Proposition 3. Because vf−1
h
((Bt,Σt,Qt)

T
t=1) does not depend on (Qt)

T
t=1, the condi-

tional prior pS((At,Ft)
T
t=1 ∣ ϕ) satisfies Equation (3) if and only if the equivalent conditional

prior pR((Bt,Σt,Qt)
T
t=1 ∣ ϕ) satisfies pR((Bt,Σt,Qt)

T
t=1 ∣ ϕ) = pR((Bt,Σt,QtPt)

T
t=1 ∣ ϕ), for

every (Pt)
T
t=1 ∈ O

T
n . The result follows because the Equation is satisfied if and only if

pR((Bt,Σt,Qt)
T
t=1 ∣ ϕ) does not depend on (Qt)

T
t=1.
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C Prior over ϕRC

This section summarizes the model constant parameters and describes our prior over ϕRC .

For ease of exposition, we partition ϕRC into fixed constant parameters ϕRC
F and estimated

constant parameters ϕRC
E , that is ϕRC = (ϕRC

F ,ϕRC
E ). The parameters in ϕRC

E depend on

hyperparameters, which we denote by ψRC . Table C.1 summarizes the parameters and

hyperparameters of the RC-SVAR. Next, we turn to the details.

Table C.1: Model Parameters

Fixed Constant Parameters: ϕRC
F

mβ1 Expected value of β1.
Vβ1 Variance of β1.
mδ1 Expected value of δ1.
Vδ1 Variance of δ1.
mγ1 Expected value of γ1.
Vγ1 Variance of γ1.
Estimated Constant Parameters: ϕRC

E

Vβ Variance of the innovations to βt.
Vδ Variance of the innovations to δt.
Vγ Variance of the innovations to γt.
Hyperparameters: ψRC

ν̄β Degrees of freedom of the prior for Vβ.
k̄β Scaling factor for the scale matrix of the prior for Vβ.
ν̄δ Shape parameter of the prior for Vδ,i for i = 1, . . . , n.
k̄δ Scaling factor for scale parameter of the prior for Vδ,i for i = 1, . . . , n.
ν̄γ Shape parameter of the prior for Vγ,i for i = 1, . . . , nγ.
k̄γ Scaling factor for scale parameter of the prior for Vγ,i for i = 1, . . . , nγ.

The prior over ϕRC
F will be Dirac. This assumption can be relaxed at the cost of increased

computation time. To set a value for ϕRC
F , we set mβ1 equal to the maximum likelihood

estimate of a constant parameter VAR with the same variables and lags based on the first

T0 = 40 observations available in our sample. We denote such an estimate by B̂. We set Vβ1

equal to 4 times the unbiased estimator for the variance of B̂, as in Primiceri (2005). To set

the values for mδ1 , mγ1 , Vδ1 and Vγ1 , first it will be useful to let Σ̂ denote the maximum
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likelihood estimate of the variance of the reduced-form residuals of the constant parameter

VAR mentioned above, and second to define the following mapping between vech(Σ̂)—

where the vech operator stacks the elements on and below the main diagonal of a square

matrix—and (δ1,γ1) ∶ g (vech(Σ̂)) =

⎛
⎜
⎜
⎝

2log (diag(D̂))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

δ1

,vecl(log Ĉ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

γ1

⎞
⎟
⎟
⎠

, where Ĉ = D̂
−1
Σ̂D̂

−1
,

D̂ = (diag(diag(Σ̂)))
1
2 , Σ̂ = (vec(In)′ ⊗ In) (In ⊗ (Dn vech(Σ̂))), and Dn is a n2 ×

n(n+1)
2

duplication matrix such that vec(Σ̂) =Dn vech(Σ̂). By Proposition 3.4 of Lütkepohl (2007),

√
T (vech(Σ̂) − vech(Σ))→ N(0,2D+n (Σ⊗Σ)D+′n )

where D+n is the Moore-Penrose generalized inverse of the duplication matrix Dn. Then, by

the Delta Method,
√
T (g (vech(Σ̂)) − g (vech(Σ)))→ N(0,Dg(Σ)2D

+
n (Σ⊗Σ)D+′n Dg(Σ)′)

where Dg (Σ) =
∂g(vech(Σ))
∂vech(Σ) . Let Vg(vech(Σ̂))(Σ) =

Dg(Σ)2D+n(Σ⊗Σ)D+′n Dg(Σ)′
T . Thus, mδ1 =

2log (diag(D̂)), mγ1 = vecl(log Ĉ)

Vδ1 = 4 [ In 0n,nγ ]Vg(vech(Σ̂))(Σ̂)

⎡
⎢
⎢
⎢
⎢
⎣

In

0nγ ,n

⎤
⎥
⎥
⎥
⎥
⎦

, and Vγ1 = 4 [ 0nγ ,n Inγ ]Vg(vech(Σ̂))(Σ̂)

⎡
⎢
⎢
⎢
⎢
⎣

Inγ

0n,nγ

⎤
⎥
⎥
⎥
⎥
⎦

where Is is the identity matrix of dimension s×s and 0s1,s2 is a matrix of zeros of dimension s1×

s2. The prior over ϕRC
E , i.e., p(ϕRC

E ∣ ϕRC
F ,ψRC), is as follows: Vβ ∼ IW(ν̄βk̄2βVβ1 , ν̄β), Vδ,i ∼

IG( ν̄δ2 ,
ν̄δ k̄

2
δ(e

′

i,nVδ1
ei,n)

2 ) for i = 1, . . . , n, and Vγ,i ∼ IG(
ν̄γ
2 ,

ν̄γ k̄2γ(e′i,nγVγ1ei,nγ )
2 ) for i = 1, . . . , nγ

where ei,x denotes the i -th column of an identity matrix of dimension x. The scale pa-

rameters are chosen to be constant fractions of the maximum likelihood estimate variances

of the corresponding subsample. In particular, k̄β = 0.01 and k̄δ = k̄γ = 0.1. We choose the

fractions to be larger for Vδ,i and Vγ,i. This choice reflects our prior belief that most of the

time variation is on the variance of the reduced-form innovations (see, for example Sims and

Zha, 2006b). The shape parameters are chosen to be the smallest natural number such that

the densities are defined. The degrees of freedom, ν̄β, are set equal to 105 so that the degrees

of freedom per parameter in our model are equivalent to the ones in Primiceri (2005). As a

consequence, the priors are as diffuse and uninformative as possible (see Primiceri, 2005, for

a similar motivation).
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Online Appendix

I Algorithm 3

Algorithm 3 iterates the following steps:

1. pRC((Bt)
T
t=1 ∣ (δt,γt,Qt)

T
t=1,ϕ

RC , (yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0)

2. pRC((Qt)
T
t=1 ∣ (Bt,δt,γt)Tt=1,ϕ

RC , (yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0)

3. pRC((δt,γt)Tt=1 ∣ (Bt,Qt)
T
t=1,ϕ

RC , (yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0)

4. pRC(ϕRC ∣ (Bt,δt,γt,Qt)
T
t=1, (yt)

T
t=1)

Since the sign restrictions depend on ((Bt,δt,γt,Qt)
T
t=1), traditional approaches such

as Carter and Kohn (1994); Durbin and Koopman (2002) do not apply to our case. As a

consequence, we adopt a single-move sampling approach inspired in Koop and Potter (2011).

In particular, we iteratively draw from the following conditional posterior distributions:

pRC(Bt ∣ B−t, (δt,γt,Qt)
T
t=1,ϕ

RC , (yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0) for 1 ≤ t ≤ T for Step 1,

pRC(Qt ∣Q−t, (Bt,δt,γt)
T
t=1,ϕ

RC , (yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0) for 1 ≤ t ≤ T for Step 2

and

pRC(δt,γt ∣ δ−t,γ−t, (Bt,Qt)
T
t=1,ϕ

RC(yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0) for 1 ≤ t ≤ T for Step 3.

whereB−t = (B1, . . . ,Bt−1,Bt+1,BT ),Q−t = (Q1, . . . ,Qt−1,Qt+1,QT ), δ−t = (δ1, . . . ,δt−1,δt+1,δT ),

and γ−t = (γ1, . . . ,γt−1,γt+1,γT ).

The draws obtained iterating Steps 1-4 above are from

pRC((Bt,δt,γt,Qt)
T
t=1,ϕ

RC ∣ (yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0)

and they are converted into structural parameters by the mappings (ḡRC ○fh)−1. These draws

approximate the posterior distribution

pRC
S ((At,Ft)

T
t=1,ϕ

RC ∣ (yt)
T
t=1,SS((At,Ft)

T
t=1) > 0).
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Next, we will discuss in more detail each of the steps mentioned above.

I.1 pRC((Bt)
T
t=1 ∣ (δt,γt,Qt)

T
t=1,ϕ

RC , (yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0)

We iteratively draw from the following conditional posterior distribution:

pRC(Bt ∣ B−t, (δt,γt,Qt)
T
t=1,ϕ

RC , (yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0) for 1 ≤ t ≤ T.

We first analyze this density when 1 < t < T :

pRC(Bt ∣ B−t, (δt,γt,Qt)
T
t=1,ϕ

RC , (yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0) =

pRC((Bt,δt,γt,Qt)
T
t=1,ϕ

RC , (yt)
T
t=1 ∣ SRC((Bt,δt,γt,Qt)

T
t=1) > 0)

∫ p
RC((Bt,δt,γt,Qt)

T
t=1,ϕ

RC , (yt)
T
t=1 ∣ SRC((Bt,δt,γt,Qt)

T
t=1) > 0)dBt

=

p((yt)
T
t=1 ∣ (Bt,δt,γt)Tt=1)p

RC((Bt,δt,γt,Qt)
T
t=1,ϕ

RC ∣ SRC((Bt,δt,γt,Qt)
T
t=1) > 0)

∫ p((yt)
T
t=1 ∣ (Bt,δt,γt)Tt=1)p

RC((Bt,δt,γt,Qt)
T
t=1,ϕ

RC ∣ SRC((Bt,δt,γt,Qt)
T
t=1) > 0)dBt

.

But

pRC((Bt,δt,γt,Qt)
T
t=1,ϕ

RC ∣ SRC((Bt,δt,γt,Qt)
T
t=1) > 0) =

[SRC((Bt,δt,γt,Qt)
T
t=1) > 0]p

RC((Bt,δt,γt,Qt)
T
t=1,ϕ

RC)

∫ ∫ORCT
pRC((Bt,δt,γt,Qt)

T
t=1,ϕ

RC)d(Bt,δt,γt,Qt)
T
t=1dϕ

RC
=

∏
T
t=1 [SRC,t(Bt,δt,γt,Qt) > 0]p

RC((Bt,δt,γt,Qt)
T
t=1,ϕ

RC)

∫ ∫ORCT
pRC((Bt,δt,γt,Qt)

T
t=1,ϕ

RC)d(Bt,δt,γt,Qt)
T
t=1dϕ

RC
=

∏
T
t=1 [SRC,t(Bt,δt,γt,Qt) > 0]p

RC((Bt,δt,γt,Qt)
T
t=1 ∣ ϕ

RC)p(ϕRC)

∫ ∫ORCT
pRC((Bt,δt,γt,Qt)

T
t=1,ϕ

RC)d(Bt,δt,γt,Qt)
T
t=1dϕ

RC
=

∏
T
t=1 [SRC,t(Bt,δt,γt,Qt) > 0]p

RC((Bt)
T
t=1 ∣ ϕ

RC)pRC((δt,γt)Tt=1 ∣ ϕ
RC)p(ϕRC)

∫ ∫ORCT
pRC((Bt,δt,γt,Qt)

T
t=1,ϕ

RC)d(Bt,δt,γt,Qt)
T
t=1dϕ

RC
. (18)

Hence,

pRC(Bt ∣ B−t, (δt,γt,Qt)
T
t=1,ϕ

RC , (yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0) =

p(yt ∣ xt,Bt,δt,γt) [SRC,t(Bt,δt,γt,Qt) > 0]p
RC(Bt+1 ∣ Bt,ϕRC)pRC(Bt ∣ Bt−1,ϕRC)

∫ p(yt ∣ xt,Bt,δt,γt) [SRC,t(Bt,δt,γt,Qt) > 0]p
RC(Bt+1 ∣ Bt,ϕRC)pRC(Bt ∣ Bt−1,ϕRC)dBt

∝

[SRC,t(Bt,δt,γt,Qt) > 0]p(yt ∣ xt,Bt,δt,γt)p
RC(Bt+1 ∣ Bt,ϕ

RC)pRC(Bt ∣ Bt−1,ϕ
RC)
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It is not hard to notice that p(yt ∣ xt,Bt,δt,γt)pRC(Bt+1 ∣ Bt,ϕRC)pRC(Bt ∣ Bt−1,ϕRC) is a

multivariate Gaussian density. To see this notice that under the RC-SVAR model:

yt = zt vec(Bt) + et with et ∼ N(0n,Σt) and vec(Bt) ∼ N(m̃t, Ṽt)

where zt = In⊗x′t, Σt = (gRC)−1(γt,δt), m̃t =
1
2(vec(Bt+1)+ vec(Bt−1)) and Ṽt =

1
2 Vβ. Thus,

p(yt ∣ xt,Bt,δt,γt)p
RC(Bt+1 ∣ Bt,ϕ

RC)pRC(Bt ∣ Bt−1,ϕ
RC) = fN(Bt; m̂t, V̂t)

where m̂t = m̃t +Kt(yt −zt m̃t), V̂t = Ṽt −Kt zt Ṽt, and Kt = Ṽt z′t(zt Ṽt z′t +Σt)
−1. This

means that pRC(Bt ∣ B−t, (δt,γt,Qt)
T
t=1,ϕ

RC , (yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0) is a multi-

variate truncated normal and standard methods can be used to draw from it. When t = T ,

we have a slightly different form for the conditional posterior density,

pRC(BT ∣ B−T , (δt,γt,Qt)
T
t=1,ϕ

RC , (yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0)∝

[SRC,t(BT ,δT ,γT ,QT ) > 0]p(yT ∣ xT ,BT ,δT ,γT )p
RC(BT ∣ BT−1,ϕ

RC)

and m̃T = BT−1 and ṼT = Vβ. When t = 1, pRC(B1 ∣ B0,ϕRC) = pRC(B1 ∣ ϕRC) and

m̃1 = (V
−1
β +V

−1
β1
)−1(V−1β B2 +V

−1
β1
mβ1) and Ṽ1 = (V

−1
β +V

−1
β1
)−1.

Importantly, when the sign restrictions do not involve Ft (and therefore Bt), this step can

be greatly simplified and we can generate (Bt)
T
t=1 from its conditional posterior distribution

following Carter and Kohn (1994).

I.2 pRC((Qt)
T
t=1 ∣ (Bt,δt,γt)Tt=1,ϕ

RC , (yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0)

We iteratively form the following conditional posterior distribution:

pRC(Qt ∣Q−t, (Bt,δt,γt)
T
t=1,ϕ

RC , (yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0) for 1 ≤ t ≤ T.

We now analyze this density:

pRC(Qt ∣Q−t, (Bt,δt,γt)
T
t=1,ϕ

RC , (yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0) =

pRC((Bt,δt,γt,Qt)
T
t=1,ϕ

RC , (yt)
T
t=1 ∣ SRC((Bt,δt,γt,Qt)

T
t=1) > 0)

∫ p
RC((Bt,δt,γt,Qt)

T
t=1,ϕ

RC , (yt)
T
t=1 ∣ SRC((Bt,δt,γt,Qt)

T
t=1) > 0)dQt

=
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p((yt)
T
t=1 ∣ (Bt,δt,γt)Tt=1)p

RC((Bt,δt,γt,Qt)
T
t=1,ϕ

RC ∣ SRC((Bt,δt,γt,Qt)
T
t=1) > 0)

∫ p((yt)
T
t=1 ∣ (Bt,δt,γt)Tt=1)p

RC((Bt,δt,γt,Qt)
T
t=1,ϕ

RC ∣ SRC((Bt,δt,γt,Qt)
T
t=1) > 0)dQt

.

Using Equation (18), we have

pRC(Qt ∣Q−t, (Bt,δt,γt)
T
t=1,ϕ

RC , (yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0)∝ [SRC,t(Bt,δt,γt,Qt) > 0] (Qt),

where

[SRC,t(Bt,δt,γt,Qt) > 0]p(Qt) =
[SRC,t(Bt,δt,γt,Qt) > 0]

v(On(Bt, (gRC)−1(δt,γt)))
for 1 ≤ t ≤ T.

Hence, pRC(Qt ∣ Q−t, (Bt,δt,γt)Tt=1,ϕ
RC , (yt)

T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0) is a trun-

cated uniform over the set of orthogonal matrices and standard methods can be used to draw

from it.

I.3 pRC((δt,γt)Tt=1 ∣ (Bt,Qt)
T
t=1,ϕ

RC , (yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0)

We iteratively form the following conditional posterior distribution:

pRC(δt,γt ∣ δ−t,γ−t, (Bt,Qt)
T
t=1,ϕ

RC(yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0) for 1 ≤ t ≤ T.

We first consider this density when 1 < t < T . We now analyze this density:

pRC(δt,γt ∣ δ−t,γ−t, (Bt,Qt)
T
t=1,ϕ

RC , (yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0) =

pRC((Bt,δt,γt,Qt)
T
t=1,ϕ

RC , (yt)
T
t=1 ∣ SRC((Bt,δt,γt,Qt)

T
t=1) > 0)

∫ p
RC((Bt,δt,γt,Qt)

T
t=1,ϕ

RC , (yt)
T
t=1 ∣ SRC((Bt,δt,γt,Qt)

T
t=1) > 0)d(δt,γt)

=

p((yt)
T
t=1 ∣ (Bt,δt,γt)Tt=1)p

RC((Bt,δt,γt,Qt)
T
t=1,ϕ

RC ∣ SRC((Bt,δt,γt,Qt)
T
t=1) > 0)

∫ p((yt)
T
t=1 ∣ (Bt,δt,γt)Tt=1)p

RC((Bt,δt,γt,Qt)
T
t=1,ϕ

RC ∣ SRC((Bt,δt,γt,Qt)
T
t=1) > 0)d(δt,γt)

.

Using Equation (18), we have:

pRC(δt,γt ∣ δ−t,γ−t, (Bt,Qt)
T
t=1,ϕ

RC(yt)
T
t=1)∝

[SRC,t(Bt,δt,γt,Qt) > 0]p(yt ∣ xt,Bt,δt,γt)p
RC(δt+1 ∣ δt,ϕ

RC)pRC(δt ∣ δt−1,ϕ
RC)pRC(γt+1 ∣ γt,ϕ

RC)

pRC(γt ∣ γt−1,ϕ
RC).
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We employ elliptical slice sampler to draw from pRC(δt,γt ∣ δ−t,γ−t, (Bt,Qt)
T
t=1,ϕ

RC(yt)
T
t=1)

by noticing that the following density:

pRC(δt+1 ∣ δt,ϕ
RC)pRC(δt ∣ δt−1,ϕ

RC)pRC(γt+1 ∣ γt,ϕ
RC)pRC(γt ∣ γt−1,ϕ

RC)

is a multivariate normal density function. More specifically, we have that it equals fN((δ′t,γ
′
t)
′; ̂̂mt,

̂̂
V)

where

̂̂mt(δt+1,δt−1,γt+1,γt−1) =
⎛

⎝

(δt+1 + δt−1) /2

(γt+1 + γt−1) /2

⎞

⎠
and

̂̂
V =
⎛

⎝

Vδ /2 0

0 Vγ /2

⎞

⎠
.

The elliptical slice sampler is an extension of a Metropolis-Hastings method. In our context,

assuming that we are in the g-th iteration of Algorithm 3, the elliptical slice sampler can be

described by following steps:

1. Draw ν ∼ N(0, ̂̂V ).

2. Draw u ∼ U[0,1] and define ℓ∗ as below:

ℓ∗ = log ([SRC,t(B
g
t ,δ

g−1
t ,γg−1

t ,Qg
t ) > 0]p(yt ∣ xt,B

g
t ,δ

g−1
t ,γg−1

t )) + log(u).

3. Draw θ ∼ U[0,2π] and define [θmin, θmax] = [θ − 2π, θ].

4. Define

(δ∗′t ,γ
∗′
t )
′ = ((δ

(g−1)′
t ,γ

(g−1)′
t )′ − ̂̂mt(δ

g−1
t+1 ,δ

g
t−1,γ

g−1
t+1 ,γ

g
t−1)) cos(θ)+ν sin(θ)+

̂̂mt(δ
g−1
t+1 ,δ

g
t−1,γ

g−1
t+1 ,γ

g
t−1).

5. If

log ([SRC,t(B
g
t ,δ

∗
t ,γ

∗
t ,Q

g
t ) > 0]p(yt ∣ xt,B

g
t ,δ

∗
t ,γ

∗
t )) > ℓ

∗,

set (δg′t ,γ
g′
t )
′ = (δ∗′t ,γ

∗′
t )
′ and exit. Otherwise, go to Step 6.

6. If θ < 0 then θmin = θ. Otherwise, θmax = θ. Then generate θ ∼ U[θmin, θmax].

7. Go to Step 4.

This sampler proposes a new draw (δ∗′t ,γ
∗′
t ) from the distribution whose marginal distribution

is fN((δ′t,γ
′
t)
′; ̂̂mt,

̂̂
V). It introduces auxiliary random variables ν and θ, where ν can be
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viewed as a random perturbation from the previous draw, and θ can be viewed as the tuning

parameter that controls the closeness of the proposed draw to the previous draw. One of the

nice features of this sampler is that θ is drawn from the exponentially shrinking interval until

the new proposed draw is accepted. In this way, the proposed draw is always accepted. The

validity of this algorithm is provided by Murray, Adams and Mackay (2010).

To complete this step, we consider two special cases. When t = T , the conditional posterior

distribution is simpler,

pRC(δT ,γT ∣ δ−T ,γ−T , (Bt,Qt)
T
t=1,ϕ

RC , (yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0)∝

[SRC,t(BT ,δT ,γT ,QT ) > 0]p(yT ∣ xT ,BT ,δT ,γT )p
RC(δT ∣ δT−1,ϕ

RC)pRC(γT ∣ γT−1,ϕ
RC)

and

̂̂mT (δT−1,γT−1) =
⎛

⎝

δT−1

γT−1

⎞

⎠
and

̂̂
V =
⎛

⎝

Vδ 0

0 Vγ

⎞

⎠
.

The second special case is when t = 1. In this case, the conditional posterior has the same

form with one exception that

pRC(δ1 ∣ δ0,ϕ
RC) = pRC(δ1 ∣ ϕ

RC) = N(mδ1 ,Vδ1) and p
RC(γ1 ∣ γ0,ϕ

RC) = pRC(γ1 ∣ ϕ
RC) = N(mγ1 ,Vγ1)

and therefore,

̂̂m1(δ2,γ2) =
⎛

⎝

(V−1δ +V
−1
δ1 )
−1(V−1δ δ2 +V

−1
δ1 mδ1)

(V−1γ +V
−1
γ1
)−1(V−1γ γ2 +V

−1
γ1
mγ1)

⎞

⎠
and

̂̂
V =
⎛

⎝

(V−1δ +V
−1
δ1 )
−1 0

0 (V−1γ +V
−1
γ1
)−1

⎞

⎠
.

Finally, we note that the current step can be further decomposed into the following

sub-Gibbs steps:

1. pRC(δt ∣ δ−t, (γt)Tt=1, (Bt,Qt)
T
t=1,ϕ

RC(yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0).

2. pRC(γt ∣ (δt)Tt=1,γ−t, (Bt,Qt)
T
t=1,ϕ

RC(yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0).

for each t. As the law of motion for δt and γt are independent (i.e.,
̂̂
V is a block diagonal

matrix), drawing from each conditional posterior can be done via the elliptical slice sampling

approach with the relevant portions of matrices ̂̂m and
̂̂
V.
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I.4 Sampling from pRC(ϕRC ∣ (Bt,δt,γt,Qt)
T
t=1, (yt)

T
t=1)

Recall that ϕRC consists of ϕRC
F and ϕRC

E . Since ϕRC
F is fixed, we only need to sample from

ϕRC
E = (Vβ,Vδ,Vγ). We take the hyperparameters ψRC as given.

I.4.1 Sampling from pRC(Vβ ∣ (Bt,δt,γt,Qt)
T
t=1, (Vδ,Vγ), (yt)

T
t=1)

Our prior distribution over Vβ is IW(ν̄βk̄2βVβ1 , ν̄β), then the posterior is:

pRC(Vβ ∣ (Bt,δt,γt,Qt)
T
t=1, (Vδ,Vγ), (yt)

T
t=1) = pRC(Vβ ∣ (βt)

T
t=1)

∝ pRC((βt)
T
t=1 ∣Vβ)p

RC(Vβ)

∝ IW(ν̃Vβ
,Ψ̃Vβ

)(Vβ),

where ν̃Vβ
= (T − 1) + ν̄Vβ

and Ψ̃Vβ
= (B2∶T − B1∶T−1)

′
(B2∶T − B1∶T−1) + ν̄βk̄2βVβ1 , where Bs∶r =

(βs, . . . ,βr)
′
for 1 < s < r ≤ T .

I.4.2 Sampling from pRC(Vδ ∣ (Bt,δt,γt,Qt)
T
t=1, (Vβ,Vγ), (yt)

T
t=1)

Our prior distribution over Vδi is IG(
ν̄δ
2 ,

ν̄δ k̄
2
δ(e

′

i,nVδ1
ei,n)

2 ) for i = 1, . . . , n. Then, the posterior

is:

pRC(Vδ ∣ (Bt,δt,γt,Qt)
T
t=1, (Vβ,Vγ), (yt)

T
t=1) = p

RC(Vδi ∣ (δt)
T
t=1)

∝ pRC((δt)
T
t=1 ∣ Vδi)p

RC(Vδi)

∝ IG
( ν̃δ

2
,
ψ̃δ,i
2
)
(Vδi),

where ν̃δ = (T − 1) + v̄δ and ψ̃δ,i = ν̄δk̄2δ(e
′
i,nVδ1ei,n) +∑

T
t=2 δ

2
i,t, where δi,t denotes the i-th entry

of δt.
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I.4.3 Sampling from pRC(Vγ ∣ (Bt,δt,γt,Qt)
T
t=1, (Vβ,Vδ), (yt)

T
t=1)

Our prior distribution over Vγi is IG(
ν̄γ
2 ,

ν̄γ k̄2γ(e′i,nγVγ1ei,nγ )
2 ) for i = 1, . . . , nγ . Then, the posterior

is:

pRC(Vγ ∣ (Bt,δt,γt,Qt)
T
t=1, (Vβ,Vδ), (yt)

T
t=1) = p

RC(Vγi ∣ (γt)
T
t=1)

∝ pRC((γt)
T
t=1 ∣ Vγi)p

RC(Vγi)

∝ IG
( ν̃γ

2
,
ψ̃γ,i
2
)
(Vγi),

where ν̃γ = (T − 1) + ν̄γ and ψ̃γ,i = ν̄γ k̄2γ(e
′
i,nγ
Vγ1ei,nγ) +∑

T
t=2 γ

2
i,t, where γi,t denotes the i-th

entry of γt.

I.5 Adapting Algorithm 3

Although the description above has been written in terms of the RC-SVAR, we could write it

in terms of other class members. For example, if one considers the member corresponding

to the prior over the time-varying reduced-form parameters in Primiceri (2005), one would

replace Step 4 in our paper with Step 2 (drawing covariance states) and Step 3 (drawing

volatility states) described in Appendix A.2 of his paper. Because Steps 2 and 3 imply

normal distributions for joint distributions of covariance and volatility states, the conditional

distributions are also normal, and an approach similar to the one described in Section I.1

can be used. More generally, our proposed algorithm can easily be adapted to any rotational

invariant time-varying SVARs with sign restrictions as long as the law of motion for (Bt)
T
t=1

and (Σt)
T
t=1 can be written as a nonlinear function of Gaussian random variables.

In the case of Bognanni (2018), a law of motion for (Bt)
T
t=1 and (Σt)

T
t=1 follows the

dynamic linear model with discounted Wishart stochastic volatility, and therefore it is not

easy to write (Σt)
T
t=1 as a function of Gaussian random variables. However, our single-move

strategy remains valid, and one would need to deal with the following conditional posterior

distribution:

pDW (Σ−1t ∣Σ
−1
t−1, (Bt,Qt)

T
t=1, ϕ

DW , (yt)
T
t=1)∝

[SOR,t(Bt,Σt,Qt)]p(yt ∣ xt,Bt,Σt)p
DW (Σ−1t+1 ∣Σ

−1
t , ϕ

DW )pDW (Σ−1t ∣Σ
−1
t−1, ϕ

DW ),
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which is a discounted Wishart stochastic volatility model variant of the conditional posterior

distribution considered in Step 3. One straightforward approach is to draw Σ−1t from

this conditional density without the sign restrictions, continuing until a draw satisfies the

restriction.

II Convergence

In this section, we evaluate the convergence of the Gibbs Sampler algorithm in the empirical

application. We focus our analysis on three well-known measures to judge the sampling

properties of the algorithm: the auto-correlation function, the inefficiency factors (that is,

the inverse of the relative numerical efficiency measure of Geweke, 1992), and the diagnostic

proposed by Raftery and Lewis (1992) for the total number of draws that are necessary to

achieve a given precision.

The model has a large number of parameters, (At)
T
t=1 has 215×5

2 parameters, (Ft)
T
t=1 has

215× 11× 5 parameters, Vδ = (Vδi)
n
i=1 has 5 parameters, Vγ = (Vγi)

nγ
i=1 has 11 parameters, and

Vβ has (11 × 5)((11 × 5) + 1)/2 parameters. Since we only identify the first equation in the

RC-SVAR, when reporting the parameters for (At,Ft)
T
t=1 we focus on those corresponding to

the first equation and we will denote them by (A⋅1,t)Tt=1 and (F⋅1,t)Tt=1, respectively.

Following Primiceri (2005), we begin by displaying the 20-th order auto-correlation. Figure

II.1 shows the results. The left upper panel reports the 20-th order auto-correlation for each

of the 215 × 5 parameters in (A⋅1,t)Tt=1, where the first 215 entries in the x-axis corresponding

to (a11,t)215t=1 , and the last 215 entries correspond to (a51,t)215t=1 . The right upper panel reports

20-th order auto-correlation for each of the 215 × 11 parameters in (F⋅1,t)Tt=1, where the first

215 entries in the x-axis corresponding to (f11,t)215t=1 , and the last 215 entries correspond to

(f11,t)215t=1 , where fij,t denotes the (i,j)-entry of Ft. The bottom left and bottom right panels

report the 20-th order auto-correlation for each of their respective elements. As it can be

seen, with some exceptions, the auto-correlation of the structural parameters is below 0.5 and

for the majority of the parameter values it is below 0.25. Turning to the hyper-parameters,

Vβ, (Vδi)
n
i=1 and (Vγi)

nγ
i=1, the 20-th auto-correlation is below 0.25 in most cases.

Next, we discuss the inefficiency factors defined as (1 + 2∑
∞
k=1 ρk). These factors are
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inversely related to the relative numerical efficiency measure of Geweke (1992). In particular,

(1 + 2∑
∞
k=1 ρk) =

2πSG(0)
γ0

where SG(0) denotes the spectral density evaluated at frequency zero

and γ0 denotes the variance of the draws. It estimates the approximate number of correlated

draws (from our Gibbs Sampler) required to match the variance in the posterior sample mean

that would be obtained from uncorrelated draws (ideal but infeasible). We computed SG(0)

using Barlett’s weights. Figure II.2 plots the results and Table II.1 provides a summary.

Overall, the inefficiency factors for the structural parameters are around or below 20, which

is a number typically considered satisfactory. As in the case of the auto-correlation, the

hyper-parameters have higher inefficiency factors.

To conclude, following Raftery and Lewis (1992) we estimate the number of draws required

to achieve a given precision when estimating posterior moments of the parameters. We used

the implementation of these statistics in the Econometrics Toolbox: developed by James P.

LeSage; we set the desired quantile equal to 0.025, the desired accuracy to 0.025, and the

probability of covering the desired accuracy to 0.95. Figure II.3 shows the results. For all

of the parameters the required number of draws is below the number of draws used in our

analysis.

Median Mean Min Max 10-th Percentile 90-th Percentile
(A⋅1,t)Tt 1.73 1.90 0.76 8.49 1.15 2.84
(F⋅1,t)Tt 8.32 13.39 1.01 67.26 2.42 36.08
Vδ 8.29 8.97 6.65 13.81 6.65 13.81
Vγ 21.13 21.53 13.56 29.64 15.80 27.80
Vβ 3.97 4.59 2.36 14.07 3.03 7.20

Table II.1: Summary of Inefficiency Factors

55



0 200 400 600 800 1000

0

0.25

0.5

0.75

1

0 500 1000 1500 2000 2500

0

0.25

0.5

0.75

1

0 5 10 15

0

0.25

0.5

0.75

1

0 500 1000 1500

0

0.25

0.5

0.75

1

Figure II.1: 20-th Order Sample Auto-Correlations

Note: The left upper panel reports the 20-th order auto-correlation for each of the 215 × 5 parameters
in (A⋅1,t)Tt=1, where the first 215 entries in the x-axis corresponding to (a11,t)215t=1 , and the last 215 entries
correspond to (a51,t)215t=1 . The right upper panel reports 20-th order auto-correlation for each of the 215 × 11
parameters in (F⋅1,t)Tt=1, where the first 215 entries in the x-axis corresponding to (f11,t)215t=1 , and the last 215
entries correspond to (f11,t)215t=1 , where fij,t denotes the (i,j)-entry of Ft. The bottom left and bottom right
panels report the 20-th order auto-correlation for each of their respective elements.
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Figure II.2: Inefficiency Factors
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III Robustness Analysis

In this section, we assess the robustness of the results reported in the paper to alternative

approaches and to different variations in the benchmark model. First, we analyze whether

the monetary shocks that we find between 2022Q2 and 2023Q2 coincide with those found by

Romer and Romer (2023). Second, we check what happens if we identify two shocks instead

of one. In particular, we will consider two monetary policy shocks: one affecting the short

end and another affecting the long end of the yield curve. Third, we demonstrate that the

ability to impose sign restrictions in only selected periods can affect inference. Finally, we

analyze the consequences of using a traditional constant parameter SVAR instead of the

time-varying approach presented here.

III.1 Romer and Romer’s July 2022 Monetary Policy Shock

To cross-verify our results, we analyze if the monetary shocks that we find between 2022Q2

and 2023Q2 coincide with those found by Romer and Romer (2023). In particular, their paper

argues that there was a contractionary monetary policy shock in July 2022. Our estimates

are consistent with such a narrative. This can be seen in Figure III.1, which shows the series

of monetary shocks identified by our model together with Romer and Romer’s (2023) shock

between 2022Q1 and 2023Q2. The black line shows the point-wise posterior medians for the

identified monetary policy shock, while the green areas represent the 68 percent point-wise

posterior probability bands. According to our estimates, there is a contractionary shock in

2022Q3.

Even so, our estimates do not perfectly match the narrative record of the latest tightening

cycle in Romer and Romer (2023). Whereas they saw some signs but not definite evidence

of a contractionary monetary policy shock in 2022Q2, our model detects a contractionary

shock in such a quarter. Looking beyond 2022, we cannot compare our approach with theirs

because their analysis was conducted in January 2023. Nevertheless, our model estimates

show some evidence of an expansionary monetary policy shock in 2023Q1, during which the

Fed decreased the pace of interest rate increases from 50 to 25 basis points.
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Figure III.1: Monetary Policy Shocks

III.2 Two Dimensions of Monetary Policy

Recent studies have emphasized that monetary policy operates through multiple dimensions

(Nakamura and Steinsson, 2018; Jarociński and Karadi, 2020; Swanson, 2021). Inspired by

this work, we aim to identify two monetary policy shocks: one affecting the short end of the

yield curve and another affecting its long end. To this end, we replace the growth rate of the

stock of money with the term spread to allow for an explicit role for the short end and the

long end of the yield curve. We measure the time spread as the difference between the yield

on the 10-year Treasury yield at constant maturity and the federal funds rate. Given this

specification, we identify two distinct monetary policy shocks. The first is a monetary policy

shock at the short end of the yield curve. This shock is identified with Restrictions 3 and 4:

Restriction 3. Following a monetary policy shock at the short end of the yield curve, the

contemporaneous impulse responses of inflation and the term spread are negative, and the

contemporaneous impulse responses of the federal funds rate and the credit spread are positive.

Restriction 4. Consider the following restrictions on the contemporaneous coefficients of

Equation (17), ψ∆y,t ∈ (0,4), ψπ,t ∈ (0,4), and ψcs,t ∈ (−4,0). In addition, we restrict the

long-run response of the fed funds rate to inflation to be positive and respect the Taylor

principle since the mid-1980s.

Restrictions 3 and 4 are identical to Restrictions 1 and 2 in the baseline except for those

related to the term and credit spreads. Let us first analyze Restriction 3. The assumption that
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the term spread decreases in response to the monetary policy shock described in Restriction

3 is aimed at isolating monetary policy variation at the short end of the yield curve. The

assumption that the credit spread increases following a contractionary monetary policy shock

is motivated in the literature (see e.g., Gertler and Karadi, 2015; Caldara and Herbst, 2019;

Jarociński and Karadi, 2020; Miranda-Agrippino and Ricco, 2021), and is useful for sharpening

identification. Turning to Restriction 4, we leave the contemporaneous response of the federal

funds rate to the term spread unrestricted given the lack of a persuasive economic theory or

institutional knowledge to restrict the sign of such response.

The second monetary policy shock is aimed at isolating monetary policy variation at

the long end of the yield curve. Since the Federal Reserve cannot control long-term interest

rates, it is less clear how to discipline the systematic component of monetary policy using

restrictions analogous to those in Restriction 4. Hence, we do not impose any restrictions on

the systematic component of monetary policy. Instead, we only use the contemporaneous

impulse responses of selected variables to identify a steepening of the yield curve induced by

monetary policy actions. More specifically, we define a monetary policy shock at the long

end of the yield curve as a structural shock that causes the federal funds rate and the term

spread to increase and the price level to decrease. Restriction 5 summarizes these identifying

assumptions.

Restriction 5. Following a monetary policy shock at the long end of the yield curve, the

contemporaneous impulse responses of inflation and the credit spread are positive, and the

contemporaneous impulse responses of the federal funds rate and the term spread are positive.

Figure III.2 plots the impulse responses to a one standard deviation monetary policy

shock at the short end of the yield curve.27 As can be seen the federal funds rate increases

and the term spread declines. This flattening of the yield curve induced by a monetary policy

tightening at the short end causes a drop in output. At the same time, inflation declines,

and credit conditions deteriorate. Figure III.3 plots the impulse responses to a one standard

deviation monetary policy shock at the long end of the yield curve. In this case, the federal

27The results in this section are based on one independent chain obtained using Algorithm 3. The chain
consists of 1,000,000 draws, we keep one every 100th draw of the structural parameters. Of the resulting
10,000 draws, we discard the first 2,500 draws.
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funds rate increases but the term spread increases too, indicating that the long-term rates

increase by more than the short-term interest rates. This type of shock causes output to

increase significantly at the same time that inflation declines and credit conditions improve.

Hence, our baseline results can be interpreted as capturing a linear combination of monetary

policy shocks at the short and long end of the yield curve.

Figure III.2: Monetary Policy Shock to the short end of the Yield Curve

Next, we assess how identifying multiple monetary policy shocks affects the conclusions

about the importance of the systematic component of monetary policy versus monetary policy

shocks in explaining the unexpected nominal interest rate movements post-2021. Figure III.4

reproduces Figure 3 for the case of two shocks. We depict monetary policy shocks at the short

end of the yield curve (short end monetary policy shock) using red bars, monetary policy

shocks at the long end of the yield curve (long end monetary policy shock) using orange

bars, and the contributions from the remaining non-monetary policy shocks are shown in

yellow bars. A first takeaway from the figure is that the forecast obtained by the RC-SVAR

featuring the term spread is broadly in line with those obtained when using the baseline

specification.

Looking at the cumulative impact of structural shocks on the unexpected variations in
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Figure III.3: Monetary Policy Shock to the long end of the Yield Curve
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Figure III.4: Monetary Policy Shock to the long end of the Yield Curve

the variables under analysis, it is evident that the share of the unexpected changes in the

federal funds rate that can be attributed to non-monetary policy shocks is in line with our

baseline result that shocks unrelated to monetary policy were the main drivers of the funds

rate during the period under analysis. Figure III.4 shows that the monetary policy shock

in the baseline is deconstructed in similar proportions into the short end and long-term

monetary policy shocks: the sum of both short- and long end monetary policy shocks seem

to be equally important contributors to the unexpected variations in the variables under

analysis than the specification featuring the term spread.
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Figure III.5: Counterfactual Simulations

Finally, we replicated the Hawkish and Dovish counterfactual experiments described in

this new environment. Figure III.5 shows the results. Although the results are similar to

the ones described for the baseline model, the Hawkish counterfactual implies a somewhat

higher output cost. This is in line with the fact that the impulse responses for short end

monetary policy shock imply a substantial drop in output and that the monetary policy rule

is associated with this shock.

III.3 Do Time-Varying Sign Restrictions Matter?

We now analyze how the ability to impose sign restrictions in only selected periods affects

inference. To this end, we contrast the monetary policy shocks obtained under the identifica-

tion scheme in Section 6.2 (which in this section we will refer to as the baseline identification

scheme) with an alternative identification scheme in which Restrictions 1 and 2 are imposed

in all periods of our sample.28

Panel (a) in Figure III.6 shows the point-wise posterior medians and the point-wise 68

percent posterior probability bands for the estimated monetary policy shocks between 2021Q1

and 2023Q2 when using the baseline identification scheme (solid dark green lines for the

median and light green shades for the bands) and when using the alternative identification

scheme (solid dark gray lines for the median and light gray shades for the bands). We focus

on the period 2021Q1:2023Q2 because during this time, clear voices were calling for monetary

28The results of the alternative identification scheme are based on 10,000 draws from the posterior
distribution obtained using Algorithm 3.
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(a) Monetary Policy Shocks (b) Histogram Monetary Policy Shocks

(c) Impact Response of Output

Figure III.6: Monetary Policy Shocks

Note: Panel (a): Point-wise posterior medians and the point-wise 68 percent posterior probability bands for
the estimated monetary policy shocks between 2021Q1 and 2023Q2 when using the baseline identification
scheme (solid dark green lines for the median and light green shades for the bands) and when using the
alternative identification scheme (solid dark gray lines for the median and light gray shades for the bands).
Panels (b) and (c): The green (gray) histogram corresponds to the baseline (alternative) identification
scheme.

policy action (see, e.g. Blanchard, 2021; Summers, 2021a,b), and it is also the period in

which we find the most significant discrepancies between the two identification schemes under

analysis.

Although the implied monetary policy shocks over the period under analysis are similar

under both identification schemes, there are some differences. Through the lens of the

alternative identification scheme, there was an expansionary monetary policy shock in 2021Q4,

while the baseline finds that the monetary policy shock was nearly centered around zero. The

difference can be seen in Panel (b), where we plot the histograms of the estimated monetary

policy shocks in 2021Q4 for the baseline (green histogram) and the alternative (gray histogram)
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identification schemes. In addition, the implications for output also differ depending on the

identification scheme in place. Panel (c) shows the histograms of the posterior estimates of

the contemporaneous impulse response of real GDP to a one-standard-deviation expansionary

monetary policy shock in 2021Q2. As can be seen, using the alternative identification scheme,

the expansionary monetary policy shock of 2021Q2 is more likely to have had positive effects

on output. This highlights that differences in impulse responses could emerge, even when

both schemes find similar monetary policy shocks, as in 2021Q2.

Overall, the results presented in Figure III.6 illustrate that the ability to impose the sign

restrictions on selected periods can affect posterior inference about the effects of monetary

policy at a critical juncture. More broadly, time-varying sign restrictions offer a helpful

toolkit for those interested in adhering on a time-specific basis to the If you know it, impose

it! If you do not know it, do not impose it! principle for inference based on sign restrictions

outlined in Uhlig (2017).

III.4 Constant Parameters SVAR

Researchers employing a constant parameters SVAR to conduct the analysis in Section 6,

while adhering to the aforementioned identification principles, would be hesitant to impose

Restriction 2. This reluctance stems from the fact that the federal funds rate was not the

primary policy instrument throughout the entire period under analysis. Consequently, these

researchers would be confident only in imposing Restriction 1, as typically done following the

work of Uhlig (2005). In this section, we explore the consequences of the inability to selectively

impose Restriction 2 by contrasting the historical decomposition presented in Section 6.4 with

the one obtained using a constant parameters SVAR identified with Restriction 1. To this

end, we specify an SVAR at a quarterly frequency featuring the same variables and sample

as in the RC-SVAR. We include a constant and four lags, as typically done in this setting

when working with constant parameters, and we use the “weak” priors described in Uhlig

(2005).29 Figure III.7 presents the comparison. Panel (a) shows the cumulative impact of

structural shocks on the unexpected variations in the federal funds rate, output growth, and

29The results of the constant parameters SVAR are based on 10,000 draws from the posterior distribution
obtained using Algorithm 1 in Arias, Rubio-Ramı́rez and Waggoner (2018).

66



core inflation for each quarter between 2022Q2 and 2023Q2 for the constant parameters case.

Panel (b) reproduces the results for the RC-SVAR shown in Figure 3. As we will discuss

below, there are two salient differences between the historical decompositions implied by the

constant parameters SVAR and the RC-SVAR, respectively.
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(a) Constant Parameters SVAR
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Figure III.7: Monetary Policy vs Non-Monetary Policy Shocks

First, through the lens of the former, monetary policy shocks contribute insignificantly to

the unexpected variations in output growth relative to the RC-SVAR. Therefore, a constant

parameters SVAR, identified solely by Restriction 1, presents a markedly different picture

regarding the drivers of unexpected output growth fluctuations between 2022Q2 and 2023Q2.

Whereas the RC-SVAR indicates that monetary policy shocks decelerated output growth in

the face of non-monetary policy shocks that caused the economy to run hotter, the constant

parameters variant suggests that monetary policy shocks propelled output growth in 2022 and

were roughly neutral after that. Figure III.8 sheds light on this discrepancy by comparing
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the impulse responses to a monetary policy shock in the RC-SVAR with those obtained

in the constant parameters SVAR. The solid dark green lines and the light green shades

correspond to the point-wise posterior median and 68 percent point-wise probability bands for

the RC-SVAR. The solid and dotted black lines correspond to the point-wise posterior median

and 68 percent point-wise probability bands for the constant parameters SVAR. In the case

of the RC-SVAR, we focus on 2022Q3—the quarter associated with the contractionary shock

identified by Romer and Romer (2023)—and we compute the impulse responses to a unit

standard deviation monetary policy shock as in Primiceri (2005). In the case of the constant

parameters SVAR, we scale the shock such that upon impact, the median increase in the

federal funds rate equals the median increase in the RC-SVAR. When using the RC-SVAR, the

posterior median of output is negative following a contractionary monetary policy shock, and,

as a result, the positive monetary policy shocks needed to explain the unexpected increase in

the fed funds rate negatively affect output. In contrast, in the constant parameters SVAR,

the posterior median response of output is positive, indicating a contractionary monetary

policy shock. The positive posterior median response of output is in line with the results in

Uhlig (2005).

Figure III.8: Selected Impulse Responses to Monetary Policy Shocks

Note: The solid dark green lines and the light green shades correspond to the point-wise posterior median
and 68 percent point-wise probability bands for the RC-SVAR. The solid and dotted black lines correspond
to the point-wise posterior median and 68 percent point-wise probability bands for the constant parameters
SVAR.

Second, although the non-monetary policy shocks explain the largest share of the unex-

pected variation of the federal funds rate in both models, in the constant parameters SVAR,

these shocks do not operate through output and inflation. This can be seen by comparing
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Panels (a) and (b) in Figure III.7: the yellow bars are much less important in explaining the

unexpected variation of output growth and inflation in the constant parameters case than in

the RC-SVAR. Thus, researchers employing constant parameters SVAR would obtain little

support for the view that unexpectedly higher interest rates were driven by non-monetary

policy shocks that induced the economy to run hotter. Instead, as shown in Figure III.9

depicting the contributors to unexpected variations of money growth and credit spreads for

the constant parameters SVAR, these researchers would conclude that non-policy shocks

induced unexpected variation in both the federal funds rate and money growth without a

clear association with the real or financial side of the economy.
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Figure III.9: Monetary Policy versus Non-Monetary Policy Shocks

In sum, these two differences show how the ability to impose time-specific sign restrictions

can shape researchers’ views on classical macroeconomic questions, such as what monetary

policy does.

IV Counterfactuals Robust to Expectational Issues

While the Bayesian paradigm adopted by our approach mitigates some of the concerns

associated with the expectational issues of the Lucas critique, it is still possible that economic

agents would become aware of the policy change over time, potentially affecting the lessons

obtained from the counterfactuals. To address the latter, we conduct a variant of the Hawkish

Fed and Dovish Fed counterfactuals that rely neither on changing the systematic component

of monetary policy nor on ex-post monetary policy surprises. For this reason, we refer to these

counterfactuals as robust to expectational concerns. Specifically, we construct a Hawkish Fed
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(Dovish Fed) counterfactual by replaying history since 2022Q2, assuming that during such

quarter, there was an additional contemporaneous monetary policy shock that other things

constant would have led to a median increase (decrease) of 75 basis points in the federal

funds rate. We choose 75 basis points so the median federal funds rate does not exceed zero

in the Dovish Fed counterfactual. Figure IV.1 shows the results, which, as can be seen, are

broadly similar to those obtained under the first set of counterfactuals.

Figure IV.1: Counterfactuals Robust to Expectational Concerns

V Time-Varying Slope of the Phillips Curve

Variations in the slope of the Phillips curve could influence the transmission mechanisms of

monetary policy shocks, potentially altering the trade-offs between output and inflation. To

evaluate this possibility, we proceed with two exercises.30 In the first one, we analyze and

compare the responses of output and inflation to monetary policy shocks across the early and

later periods of our sample. To analyze this point, Figure V.1 shows the impulse responses of

output and prices to a one standard deviation monetary policy shock in 2022Q1 and 1975Q1.

The price responses are much larger at the end of the sample, suggesting that Chair Burns

faced a more adverse output-prices trade-off during the early to mid-1970s inflation run-up

than the one faced by Chair Powell in the inflation surge of 2022-2023.

In the second exercise, we generate data using the canonical three-equation New Keynesian

model described in Gaĺı (2008) assuming that there is a structural break (a significant

30We would like to thank a referee for proposing both experiments.
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Figure V.1: Monetary Policy Shocks

Note: Point-wise posterior medians and the point-wise 68 percent posterior probability bands for the impulse
responses of output and prices to a one standard deviation monetary policy shock in 2022Q1 (green coloring)
and 1975Q1 (yellow coloring), respectively.

steepening) in the slope of the Phillips curve and check whether—in a controlled environment—

our model can capture the increase in the slope of the curve in response to a monetary policy

shock. We model the break as a permanent unexpected increase in the slope of the Phillips

curve. For completeness, we briefly summarize the model:

(1) IS Curve: ỹt = Etỹt+1 − σ(it −Etπt+1 − r
n
t ),

(2) Phillips Curve: πt = βEtπt+1 + κỹt + ut, (19)

(3) Monetary Policy Rule: it = ρiit−1 + (1 − ρi)(ρ + ϕππt + ϕỹỹt) + vt,

where the endogenous variables are the output gap (denoted by ỹt), inflation (denoted by

πt), and the short-term interest rate (denoted by it); all in deviations from the steady state.

The exogenous variables are the natural rate of interest (rnt ), a technology shock (at), a

cost-push shock (ut), and a monetary policy shock (vt). The natural rate of interest evolves

as rnt = ρ + σEt(at+1) where σ is inverse of the elasticity of inter-temporal substitution and

ρ denotes the steady state of the nominal interest rate. The technology shock and the

cost-push shock evolve as Gaussian AR(1) processes: at = ρaat−1+σaεat and ut = ρuut−1+σuεut,

respectively. The persistence of these processes is governed by the parameters ρa and ρu,

and their volatility by σa and σu. The monetary policy shock is a Gaussian i.i.d process

with volatility σi; vt = σvεvt. The remaining parameters are the ones that characterize the
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monetary policy equation (ρi, ϕπ, πỹ) and the slope of the Phillips curve (κ). The latter is a

critical parameter in our simulation.

The key parameter of interest κ in Equation (19) is set equal to 0.1 for the first 200

periods of the simulation and then surprisingly and permanently increases from 0.1 to 0.5 for

the remaining 15 periods of the simulation. This matches our sample size and it means that

we simulate a break in period 201 which corresponds to 2020Q1. The rest of the parameters

are fixed to the following values:

Parameter Value Description
β 0.99 Discount factor
1/σ 1.00 Elasticity of intertemporal substitution
ρi 0.85 Monetary policy inertia
ϕπ 1.50 Response to inflation
ϕỹ 0.125 Response to the output gap
ρa 0.90 Shock persistence (at)
ρu 0.90 Shock persistence (ut)
σv 0.001 Shock standard deviation (vt)
σa 0.0005 Shock standard deviation (at)
σu 0.0005 Shock standard deviation (ut)

Table V.1: Calibration of Parameters

To analyze if our time-varying SVARs models can capture these impulse responses, we

use Algorithm 3 to obtain 200,000 draws from the posterior of the RC-SVAR model using

the simulated data. When doing so, we set the prior following the procedure described in

Section C.

Figure V.2 produces the point- wise posterior median and 68 percent point-wise probability

bands for the RC-SVAR before and after the break. The impulse responses associated with

the New Keynesian model described before and after the change in κ, qualitatively match

those in Figure V.1. When κ is low (high) output reacts more (less) to a monetary policy

shock and the contrary happens to the price level. The simulation is as long as our sample,

so we can map the dates to our original sample. For this reason, we consider the periods that

correspond to 1975Q1 with a value of κ equal to 0.1 and 2022Q1 with a value equal to 0.5.

As the reader can see, our time-varying SVARs models can capture the effects associated

with an increase in κ implicit in the New Keynesian model just described, even in a short
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Figure V.2: Monetary Policy Shocks

Note: Point-wise posterior medians and the point-wise 68 percent posterior probability bands for the impulse
responses of output and prices to a one standard deviation monetary policy shock in 2022Q1 (green coloring
and κ = 0.5) and 1975Q1 (yellow coloring and κ = 0.1), respectively.

sample of 215 periods.
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