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There are five sections in this appendix.

• Section A details how we compute the posterior distributions of the impulse response

functions.

• Section B describes the algorithms to compute the impulse response functions.

• Section C discusses further empirical results from our two models in the empirical

section.

• Section D describes an event study exercise detailing the relationship between finan-

cial uncertainty and the macroeconomy and also describes theoretical and empirical

exercises that support our spread identification assumption in the main text.

• Section E discusses an exercise using our sign restrictions methodology on data simu-

lated from a DSGE model.
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A Posterior distribution of IRFs

In this section, we describe how to obtain quantities that are reported in our empirical

exercises. Our inference is based on the following posterior distribution for ψ and Q,

P (ψ,Q|Y ) ∝ p(Y |ψ)p(ψ)1{ψ ∈ P(R)}p(Q|ψ) (A.1)

where the first approach (Full Bayesian approach) assumes that the prior for Q is condi-

tionally flat on Q(ψ,R), which is the admissible set for Q at the parameter ψ and sign

restrictions R. The second approach considers a set of all proper prior distributions for Q

on Q(ψ,R).

The marginal prior distribution for ψ is specified as

p̃(ψ) =
1

vol(P(R))
1{ψ ∈ P(R)}p(ψ), vol(P(R)) =

∫
{ψ:p(ψ)>0}

1{ψ ∈ P(R)}p(ψ)dψ (A.2)

where the initial proper prior distribution for ψ, p(ψ), is truncated to the region P(R), which

is the set of ψ that Q(ψ,R) is non-empty. The choice of p(ψ) is model and application

specific. So, we leave the discussion about the prior distribution for ψ to section C.1.3 in

this appendix for the CAIW model and section C.2.1 for the model of Carriero et al. (2017).

A.1 Fully Bayesian approach with a flat prior

Let IRF (Q,ψ) be a collection of IRF (yi,t+s|v∗t = ej, Q, ψ) for all i = 1, 2, ..., k, j = 1, 2, ..., J ,

and J < k, and s = 0, 1, ..., S. We approximate the posterior moments of IRFs using the

following steps

Posterior sampling for IRFs with a flat prior (Uhlig, 2005)

1. Generate ψ(m1) from p(ψ|Y ) for m1 = 1, 2, ...,M1 and store them.
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2. For each m1 = 1, 2, ...,M1, iterate the following steps for m2 = 1, 2, ...M2:

(a) Generate Q∗ uniformly from O(k).

(b) Compute IRF (Q∗, ψ(m1)).

(c) Set IRF (Q(m2,m1), ψ(m1)) = IRF (Q∗, ψ(m1)) and store it if Q∗ ∈ Q(ψ,R).

After this algorithm, we have posterior draws of IRF (ψ(m), Q(m)) for m = 1, 2, ...,M .1

The algorithm is based on the following decomposition

p(ψ,Q|Y ) = p(Q|ψ)1{ψ ∈ P(R)}/vol(P(R))︸ ︷︷ ︸
step 2

× p(Y |ψ)p(ψ)/P (Y )︸ ︷︷ ︸
step 1,≡p(ψ|Y )

(A.3)

The first step is to generate ψ from its posterior distribution with non-truncated prior dis-

tribution and it is model specific. In our empirical exercises, we use the particle Gibbs

sampler. The second step aims to generate draws from Q(m2,m1) from p
(
Q|ψ(m1)

)
using the

reject/accept sampling. Step 2-(a) can be done by QR algorithm of Rubio-Ramirez et al.

(2010). Step 2-(b) is done by simulation-based approximation (Section B.1 in this appendix).

Step 2-(c) is simply to check whether IRF (ψ(m1), Q∗) satisfies the sign restrictions.

We present posterior moments of interest such as pointwise median and quantiles for each

s-step-ahead horizon response of the ith variable to the jth uncertainty shock.

Point estimator. We report measures of central tendency using the pointwise posterior

median as well as the median target method of Fry and Pagan (2007). For the median target

method, we first compute the posterior median for each s-step-ahead horizon response of the

ith variable to the jth uncertainty shock. Then, we report the impulse response function that

is the most closest to this pointwise median among {IRF (ψ(m1), Q(m2,m1)) : for all m1,m2}

1For notational convenience, we re-index posterior samples so that we transform (m1, (m1,m2)) into (m).
Then, M is the number of kept IRFs from this algorithm.
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in L2 norm. That is, for each variable (i) and shock of interest (j), we find m1 and m2 that

minimize the following:

S∑
s=0

(
IRF (yi,t+s|v∗t = ej, Q

(m2,m1), ψ(m1))− ̂IRF (y)
)2

. (A.4)

In this way, we preserve the dynamics in IRF over the horizons, which is potentially miss-

ing in the pointwise posterior medians. In our application, reported point estimates and

pointwise posterior medians are very close to each other (see section C.1.9).

Interval estimator. We report pointwise equal-tailed α% credible regions for the IRFs.

We approximate upper and lower quantiles based on the posterior draws from the above

algorithm.

A.2 Robust Bayesian approach

In the empirical illustration, we compute and robust credible sets and the robust posterior

mean bounds for sign-restricted IRFs based on the following algorithm:

Posterior sampling for IRFs (Algorithm 4.1 of Giacomini and Kitagawa, 2015)

1. Generate ψ(m1) from p(ψ|Y ) for m1 = 1, 2, ...,M1 and store them.

2. For each m1 = 1, 2, ...,M1, iterate the following steps for M2 times:

(a) Generate Q∗ uniformly from O(k).

(b) Compute IRF (ψ(m1), Q∗).

(c) Set IRF (Q(m
(m1)
2 ,m1), ψ(m1)) = IRF (Q∗, ψ(m1)) and store it if Q∗ ∈ Q(ψ,R). In-

crease m
(m1)
2 by 1.
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3. Approximate pointwise lower and upper bound of s-period-ahead impulse response of

ith variable to jth shock at m1th draw by

l(m1)(i, j, s) = min
m∈{1,2,...,m(m1)

2 }
IRF (yi,t+s|v∗t = ej, Q

(m,m1), ψ(m1))

u(m1)(i, j, s) = max
m∈{1,2,...,m(m1)

2 }
IRF (yi,t+s|v∗t = ej, Q

(m,m1), ψ(m1)).

(A.5)

4. Posterior mean bound for s-period-ahead impulse response of the ith variable to the

jth shock is approximated by

(
1

M1

M1∑
m1=1

l(m1)(i, j, s),
1

M1

M1∑
m1=1

u(m1)(i, j, s)

)
(A.6)

5. α%-robustified credible interval for the s-period-ahead impulse response of ith variable

to jth shock is approximated by [r∗α − ẑα(r∗α), r∗α + ẑα(r∗α)] with r∗α ∈ arg minr ẑα(r)

where ẑα(r) is the sample αth quantile of max{|r − l(m1)(i, j, s)|, |r − u(m1)(i, j, s)|}.

This is based on Giacomini and Kitagawa (2015). A more efficient implementation is possible

for these objects with a class of linear VAR models (Amir-Ahmadi and Drautzburg, 2017).
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B Computation of IRFs

In this section, we describe steps to compute the impulse response functions of various objects

to uncertainty shocks. The first part of this section works with the general form of the model

(equations 1, 2, and 3). Then, we discuss cases in which the stated algorithm is simplified.

B.1 General algorithm

We define the impulse response functions as

IRF [yi,t+s; v
∗
t = ej, Q, ψ] = E[yi,t+s|v∗t = ej;Rt, ψ]− E[yi,t+s|v∗t = 0;Rt, ψ] (A.7)

where Rt = chol(Ω(wt−1;ω))Q. We explicitly state the dependency of Q.

Here is the steps to approximate IRFs using the right-hand-side term in the above equation

given Rt and ψ.

Algorithm to compute IRFs. Set m = 1 (m is the index of the simulation number, with

total simulations as M) and follow steps below.

1. Consider one standard deviation increase of an element in v∗t

v∗,1t = ej versus v∗,0t = 0k×1 (A.8)

where ej is a k× 1 column vector with a 1 in the jth element and zeros elsewhere and

0k×1 is a vector of zeros.

2. Form reduced-form shocks in the initial period v1
t and v0

t . Note that as the jth shock

is operative, only the jth column of Rt must be identified.

v1
t = Rtej versus v0

t = 0k×1. (A.9)
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3. Simulate two volatility and observable paths indexed by (m), using equations 1, 2, and

3, conditional on Rt and ψ,

{h(m)
τ (v1

τ )}τ=t,t+1,...,t+s versus {h(m)
τ (v0

τ )}τ=t,t+1,...,t+s, (A.10)

and

{Σ(m)
τ (v1

τ )}τ=t,t+1,...,t+s versus {Σ(m)
τ (v0

τ )}τ=t,t+1,...,t+s. (A.11)

and

{y(m)
τ (v1

τ )}τ=t,t+1,...,t+s versus {y(m)
τ (v0

τ )}τ=t,t+1,...,t+s. (A.12)

Go to step 4 with m = m+ 1 if m < M ; otherwise go to step 4.

4. Form (τ − t)-horizon impulse response of ith variable to jth uncertainty shock by

integrating out simulated shocks, {vτ , ετ}τ=t+1,t+2,...,s and εt,

IRF [yi,τ−t; v
∗
t = ej, Q, ψ] =

1

M

M∑
m=1

y
(m)
i,τ (v1

t )−
1

M

M∑
m=1

y
(m)
i,τ (v0

t )

IRFs[Σii,τ−t; v
∗
t = ej, Q, ψ] =

1

M

M∑
m=1

Σ
(m)
ii,τ (v1

t )−
1

M

M∑
m=1

Σ
(m)
ii,τ (v0

t )

IRFs[hi,τ−t; v
∗
t = ej, Q, ψ] =

1

M

M∑
m=1

h
(m)
i,τ (v1

t )−
1

M

M∑
m=1

h
(m)
i,τ (v0

t )

(A.13)

and the impulse response of (τ − t+ 1)-step-ahead forecast error variance is computed

as

1

M

M∑
m=1

(
yi,τ (v

1
t )−

1

M

M∑
m=1

y
(m)
i,τ (v1

t )

)2

− 1

M

M∑
m=1

(
yi,τ (v

0
t )−

1

M

M∑
m=1

y
(m)
i,τ (v0

t )

)2

.

(A.14)
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B.2 Discussion

In its most general form, as is generally the case with nonlinear impulse response functions,

the linear relationship between volatility shocks (vt) and uncertainty shocks (v∗t ) are path

dependent via Ωt = Ω(ht−1, ω), making the IRFs also path dependent. However, for many

existing models in the form of equations 1, 2, 3, there is no path dependence. Moreover, if

the model is specified in a way that object of interest is linear in vt, then our definition of the

IRFs coincides with the traditional IRFs, which does not require any stochastic simulation.

Cholesky volatility specification in section 3.1 is such a case. The IRFs for ht is then

IRF (h·,t+s|v∗t = ej, Q, ψ) =

(
s∏

τ=0

Φτ

)
chol(Ω)Q. (A.15)

If we assume that gy(Σt) = f−1(Σt;A) = ht (as in our second application and Carriero et al.

(2017) but with Bh = 0), then the first moment response function is

IRF (y·,t+s|v∗t = ej, Q, ψ) = By

(
s∏

τ=0

Φτ

)
chol(Ω)Q. (A.16)

When there is path dependent in IRFs, there are two options on the table: 1) present

IRFs conditional on a specific path; 2) integrate out the path dependency using its invariant

distribution or integrate out the posterior distribution of object that approximates this path

dependency.

For CAIW model, the IRFs depend on Σt−1 at time t. More specifically, Ωt is a function

of Σt−1, Ωt = Ω(Σt−1;ω) where Ω() is a deterministic function of Σt−1 and ω = ν,A,C.

In our empirical application, we take the second approach and integrate Σt−1 out using its

invariant distribution.2 Then, for example, ith element of the left expectation in equation

2We thank the referee for this suggestion.
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A.7 is defined as

E[yi,t+s|v∗t = ej;R∗, ψ] ≡
∫
E[yi,t+s|v∗t = ej; chol(Ω(Σ0))Q,ψ]p∗(Σ0|ψ) dΣ0 (A.17)

where p∗(Σ0|ψ) is an invariant distribution of Σt−1 at parameter ψ. In computing this IRF,

we further truncate the joint prior distribution of ψ and Σ0 to the region P(R), which is

the set of ψ and Σ0 that there is at least one Q∗ in O(k) that IRF [y·,t+s|chol(Ω(Σ0))Q∗, ψ]

satisfies R.

There are alternative ways to integrate the path dependency. One way would be:

E[yi,t+s|v∗t = ej;R∗, ψ] ≡ E[yi,t+s|v∗t = ej; chol(Ω(Σ∗))Q,ψ] (A.18)

where Σ∗ = the long run mean of Σt. The long run mean of Σt is a known function of other

model paratmers, Φ, C, ν. So, we write Σ∗ = gΣ∗(Φ, C, ν). Then, for example, the posterior

mean of these IRFs can be computed using posterior draws from the algorithm in section

A.1:∫
E[yi,t+s|v∗t = ej;chol(Ω(gΣ∗(Φ, C, ν)))Q,ψ] p(Q,ψ|Y )dQdψ

=
1

M

M∑
m=1

E[yi,t+s|v∗t = ej; chol(Ω(gΣ∗(Φ
(m), C(m), ν(m))))Q(m), ψ(m)]

(A.19)

where Φ(m), C(m), ν(m) are in ψ(m).

Another alternative way is to define:

E[yi,t+s|v∗t = ej;R∗, ψ] ≡ E[yi,t+s|v∗t = ej; chol(Ω(Σ∗∗))Q,ψ] (A.20)

where Σ∗∗ = 1
T

∑T
t=1 Σt (the sample average of Σt). Then, for example, the posterior mean
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of these IRFs can be computed using posterior draws from the algorithm in section A.1:

∫
E[yi,t+s|v∗t = ej;chol(Ω(Σ∗∗))Q,ψ] p(Q,ψ|Y )dQdψ

=
1

M

M∑
m=1

E[yi,t+s|v∗t = ej; chol(Ω(Σ(m)
∗∗ ))Q(m), ψ(m)]

(A.21)

where Σ
(m)
∗∗ = 1

T

∑T
t=1 Σ

(m)
t and Σ1:T ∈ ψ.

Finally, we want to mention that all three approaches are different in the way they ap-

proximate the long-run aspect of Σt, but they all lead to quite similar posterior distribution

in our application. For example in Figure A-1, we report the response of the IP to finan-

cial uncertainty shocks (left) and macro uncertainty shocks (right) based on these three

approaches.
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Figure A-1 Response of the IP to financial uncertainty shocks (left) and macro uncertainty
shocks (right). Based on different integration schemes to average the state dependency out.

Based on equation A.17

to financial uncertainty shocks to macro uncertainty shocks

Based on equation A.19

to financial uncertainty shocks to macro uncertainty shocks

Based on equation A.21

to financial uncertainty shocks to macro uncertainty shocks
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C Details of the empirical section

C.1 Example 1: Small-scale VAR

C.1.1 Model

The CAIW(1)-in-VAR(12) model we considered in the empirical exercise is

yt = µy +
12∑
p=1

Φy
pyt−p +Bylog(diag(Σt)) + εt, εt|Ft−1 ∼ N(0,Σt)

Σt|Σt−1 ∼ IW ((ν − n− 1)(C + ΦΣt−1Φ′), ν)

(A.22)

Note that the process is formulated in a way that the conditional mean of the volatility

matrix has the following simple form

E[Σt|Ft−1] = C + ΦΣt−1Φ′ (A.23)

and

Cov(Σij,t, Σlm,t|Ft−1) =
2Ψij,tΨlm,t + (ν − n+ 1)(Ψil,tΨjm,t + Ψim,tΨlj,t)

(ν − n)(ν − n− 3)
(A.24)

where Ψt = C+ΦΣt−1Φ′. This delivers a convenient linear representation for the multivariate

volatility process with innovations that are martingale difference sequences. This leads to

the VAR representation of volatility process3,

ht = µh + Φhht−1 + vt, E[vt|Ft−1] = 0, and E[vtv
′
s|Ft−1] = 0, ∀s 6= t, (A.25)

where ht = vech(Σt), µ
h = vech(C), Φh = Ln(Φ ⊗ Φ)Dn with Dnvec(x) = vech(x) and

vech(x) = Lnvec(x). The covariance matrix of vt, Ωt, is a deterministic function of Σt−1, Φ,

3The VAR form of the volatility process proves key to deriving unconditional moments and giving
stationarity conditions, as discussed in Golosnoy et al. (2012).
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C and ν, and its formula is given by the equation A.24.

C.1.2 Data

We estimate the model on industrial production, CPI, federal funds rate, and the excess

bond premium. We plot in figure A-2 the four monthly series used in our estimation of the

model.

Industrial production

Federal funds rate

Consumer price index

Excess bond premium

Figure A-2 (Clockwise from top) Monthly log industrial production of the manufacturing
sector, log consumer price index, federal funds rate, and excess bond premium (bottom)
1973M1− 2012M12. Blue bars indicate NBER recession dates. We obtained the macroeco-
nomic data from the Federal Reserve Bank of St. Louis FRED and the excess bond premium
data from Simon Gilchrist’s website.
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C.1.3 Prior specification

In setting up the prior, we divide up the parameters into three categories:

• VAR conditional mean parameters : {µy,Φy(L)}

• Volatility process parameters: {C,Φ, ν}

• Volatility-in-mean parameter: By

• Rotation matrix: Q

In this section, we begin by discussing our initial proper prior distributions over the

reduced-form parameters p(ψ) and the conditional prior of p(Q|ψ). As was discussed in

the main text, given the set of sign restrictions R, we must then truncate this joint prior

distribution over ψ and Q to only take into account parameters that lead to IRFs in the

identified set.

VAR conditional mean parameters For the standard VAR conditional mean parame-

ters µy and Φy, we use a Minnesota prior. We center the mean of the prior over all elements

of µy around 0 with a variance of 1000. For the Φy parameters, we center all terms around

0, except for the diagonal elements of Φy(1), which are centered around 1. The variances of

the values are set at
(
θ
l
σi
σj

)2

for variable j in equation i. We set θ = 0.2. σi is the standard

deviation of the innovation term estimated from a V AR(12) model using OLS.

Volatility process parameters The inverse Wishart volatility process is fairly new to

the macro literature. We attempt to choose priors for its parameters that lead to similar

implications for the volatility processes when compared to the literature.

We choose an independent normal prior over the elements Φ that centers around a fair

amount of persistence in the volatilities and no cross-term interaction between the ele-

ments of the variance covariance matrix (prior mean of Φ that is diagonal with elements

0.9 with prior variance of 0.01). We truncate this prior to only consider Φh draws that
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lead to stationarity. We choose an inverse Wishart prior for C with precision matrix

(15− ndim− 1) diag ([0.085, 0.009, 0.039, 0.011]) with degrees of freedom of 15. As we need

to ensure the positive definiteness of the C matrix, we find it easier to place a prior directly

over C instead of over the long-run mean of volatility. We choose values of the prior over the

precision matrix that lead to reasonable long-run volatility predictions and also a wide range

of possible values. The variances of innovations estimated from a VAR(12) on the data using

OLS, which is a rough estimate of the long-run mean of the volatilities in the data, are in high

density mass areas of the prior. The prior over ν is set to a gamma distribution with mean 40

and variance 10. We truncate this to ν ∈ [6,∞), where the lower bound is a minimal integer

that allows a finite first moment of Σt. This parameter governs the conditional variance of

a volatility shock. As one will see in the log volatility impulse response prior analysis, this

prior leads to log volatility movements of a one standard deviation uncertainty shock that

covers much the same mass over the log volatility movements of the VAR residuals as that

implied by the priors adopted in Clark and Ravazzolo (2015) or Carriero et al. (2017).

Finally, we make an assumption about the initial variance-covariance matrix. The prior

distribution of Σ1 is:

Σ1 ∼ IW ((ν0 − k − 1)V0, ν0) (A.26)

where ν0 = 20 and V0 is such that vech(V0) = (I − Φh)−1µh.

Volatility-in-mean parameter The By parameter governs the relationship between the

volatilities and the level variables. As gy(Σ) is assumed to be log (diag (Σ)), the By
ij element

can be interpreted as an elasticity (percentage change in the variable yi,t to a percentage

change in the volatility of the innovation j: Σjj,t).

We choose independent normal priors for elements of the By parameter that are centered

around 0. This choice reflects an ignorance about the sign of the response of macro or

financial variables when volatility in the economy increases. We choose prior variances of
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10 for all elements of By except those governing the impact of volatility shocks on the

EBP, which we choose to be 0.05. An interpretation of this prior is that a 1% increase in

the volatility of the innovations to any variable leads to either a movement in industrial

production, the CPI, and the federal funds rate of between −5.20% and 5.20% at the 90%

credible set level. We choose a tighter prior over the EBP spread response to changes in

volatility because we are imposing a sign restriction on this response. We choose this prior

spread to target a reasonable range of EBP IRFs to our volatility shocks. In terms of

elasticities, this prior implies that a 1% increase in the volatility of the innovations leads to

a movement in the EBP of between −0.37% and 0.37% at the 90% credible set level.

Rotation matrix Conditional on a reduced-form parameter draw ψ, we draw the rotation

matrix Q from the conditional Haar prior. This prior imposes a conditionally uniform

distribution over the set of rotation matrices and has been a standard choice in the sign

restrictions literature since Uhlig (2005).
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C.1.4 Prior implications for the impulse response functions

We look at the prior implications of the joint prior over the reduced form parameters and

the rotation matrices, in conjunction with the imposed sign restrictions for the level and

volatility impulse response functions. We take 500 draws from the prior distribution and

compute impulse response functions for 30 Q rotations per parameter draw, selecting those

that satisfy Assumptions Auf ,Aum, and Ao.

Figures A-3 and A-4 shows the level IRFs implied by the prior distribution following a

financial and macro uncertainty shock, respectively. The bands show the 90% credible sets

for the impulse response functions. It is immediately clear from the figures that the IRFs for

industrial production, CPI, and the federal funds rate are symmetric and centered around

0%. Moreover, the prior puts ample mass on empirically relevant ranges of the real effects

of uncertainty shocks found using uncertainty proxies (e.g. Bloom (2009), Leduc and Liu

(2012), Jurado et al. (2015), Caldara et al. (2016)). This result comes from the fact that we

are not imposing any sign restrictions on the three impulse response functions, the prior for

the By parameter matrix is centered around 0, and the Minnesota prior on the Φy matrix is

centered around independent unit roots. We therefore are confident that we are not biasing

the signs of any of the responses of the three macro variables from our sign restrictions.

As expected, we do see a prior effect on the EBP IRF. For the financial uncertainty shock,

this prior effect directly follows from the sign restriction. On impact, the 5 − 95% credible

bands range from 0.002% to 0.083%. This range seems relevant. For example, Caldara et al.

(2016) finds using financial uncertainty proxies (such as realized stock market volatility)

that an uncertainty shock has an impact on the EBP including the upper bound of this

range.4 More macro-based uncertainty proxies, such as measures of forecast dispersion, lead

4We are aware that it is technically not appropriate in a Bayesian sense to use posterior results on U.S.
data to justify the prior. However, these results use different data to measure uncertainty and alternative
identification strategies. Moreover, we are just using these results to give a sense of the reasonableness of
the prior. We have tried several different priors on the By matrix elements in the EBP equation and find
broadly similar posterior results.
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Figure A-3 Prior results:
Financial uncertainty shock on level variables (Haar)
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This figure shows the pointwise 90% credible set impulse response functions on the level variables to a 1
standard deviation financial uncertainty shock for the small VAR model. The reduced-form parameters are
drawn from their prior distributions. We assume a Haar prior over the rotation matrices. We only keep the
impulse response functions that satisfy Assumptions Auf ,Aum, and Ao. The dark red line is the impulse
response function drawn from a single Q∗ that is closest to the pointwise median in a sum of squares sense
(median target method of Fry and Pagan (2007)).

to increases in the EBP near the lower bound. From period 1 onwards, we can see that the

effects of the sign restriction begin to diminish. The prior distribution includes 0% at the

15% level. By the second period, the prior IRF for EBP is already quite wide around 0%.

The sign restriction also biases the impulse response function of EBP for the macro un-

certainty shock. An important point to notice, however, is that we leave the sign of the EBP

response to a macro uncertainty shock unrestricted. The 5% − 95% credible bands range

from −0.034% to 0.052%. This happens because of the joint identification restriction with
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Figure A-4 Prior results:
Macro uncertainty shock on level variables (Haar)
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This figure shows the pointwise 90% credible set impulse response functions on the level variables to a 1
standard deviation macro uncertainty shock for the small VAR model. We assume a Haar prior over the
rotation matrices. We only keep the impulse response functions that satisfy Assumptions Auf ,Aum, and Ao.
The dark red line is the impulse response function drawn from a single Q∗ that is closest to the pointwise
median in a sum of squares sense (median target method of Fry and Pagan (2007)).

the financial uncertainty shock. By assumption, the financial uncertainty shock must lead to

a positive increase in the EBP. It also must increase the volatilities of all innovations. These

restrictions tend to select By parameter matrices that have positive volatility loadings in

the EBP equation. This can be confirmed in figure A-5, which compares the unconditional

distribution of By matrix elements in the EBP equation (light brown) to the distribution of

By matrix elements in the EBP equation that lead to IRFs that satisfy our sign restrictions.

The macro uncertainty shock also increases the volatilities of all innovations. Therefore, this
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Figure A-5 Prior density of By matrix elements in the EBP equation
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This figure shows the unconditional prior densities of the By matrix elements in the EBP equation (light
brown) overlaid with the prior densities only considering corresponding to the draws selected that satisfy
the sign restrictions laid out in Assumptions Auf ,Aum, and Ao (dark brown).

interaction tends to produce an upward bias on the EBP response for macro uncertainty

shocks. A prior that puts a fair amount of weight on a positive impact of macro uncertainty

shocks on the EBP does seem reasonable given the known countercyclicality of uncertainty

and spreads (Bloom (2014)). The prior, however, does still put weight on no contempora-

neous impact and a negative impact. Similarly to the financial uncertainty shocks, moving

forward, the prior puts large weight on positive and negative EBP responses to a macro

uncertainty shock.

We also analyze the prior implications of the volatility shock sign restrictions on the second

moments. Figures A-6 and A-7 show that the responses of log volatility to a financial and
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Figure A-6 Prior results:
Financial uncertainty shock on log volatility of innovations (Haar)
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This figure shows the pointwise 90% credible set impulse response functions on the log volatility of innovations
to a 1 standard deviation financial uncertainty shock for the small VAR model. We assume a Haar prior
over the rotation matrices. We only keep the impulse response functions that satisfy Assumptions Auf ,Aum,
and Ao. The dark blue line is the impulse response function drawn from a single Q∗ that is closest to the
pointwise median in a sum of squares sense (median target method of Fry and Pagan (2007)).

macro uncertainty shock, respectively. On impact, we find that the prior for log volatility

response ranges from 0.01 to 0.16 at the 90% credible set level for each of the four variables.

Given the fairly high prior for the diagonal elements of the A matrix, it is not surprising

that the impulse response functions are persistent.
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Figure A-7 Prior results:
Macro uncertainty shock on log volatility of innovations (Haar)
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This figure shows the pointwise 90% credible set impulse response functions on the log volatility of innovations
to a 1 standard deviation macro uncertainty shock for the small VAR model. We assume a Haar prior over
the rotation matrices. We only keep the impulse response functions that satisfy Assumptions Auf ,Aum,
and Ao. The dark blue line is the impulse response function drawn from a single Q∗ that is closest to the
pointwise median in a sum of squares sense (median target method of Fry and Pagan (2007)).
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Figure A-8 Wide prior results:
Financial uncertainty shock on EBP (Haar)
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This figure shows the pointwise 90% credible set impulse response functions on the EBP to a 1 standard
deviation financial uncertainty shock for the small VAR model. We assume a Haar prior over the rotation
matrices and a wider By (variance of 0.5) prior on the EBP equation. We only keep the impulse response
functions that satisfy Assumptions Auf ,Aum, and Ao. The dark red line is the impulse response function
drawn from a single Q∗ that is closest to the pointwise median in a sum of squares sense (median target
method of Fry and Pagan (2007)).

Wide By prior on EBP equation The priors on the parameters of the By matrix in

the EBP equation interact with the sign restrictions to influence not only the sign, but also

the magnitudes of the impulse response functions on the EBP from a financial uncertainty

shock. We now discuss the effects of a wider By prior on the elements in the EBP equation.

A wider By prior pushes up the distribution of EBP responses to a financial uncertainty

shock. We keep our other prior specifications the same, but we increase the variance of the

By matrix elements in the EBP equation from 0.05 to 0.5.

In figure A-8, we present the prior implications for the EBP IRF to a financial uncertainty

shock under the alternative prior. We see that the prior distribution implies a wider range on

impact, but also one that is shifted upwards. On impact, the 5%−95% credible bands range
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from 0.01% to 0.25%. That the credible bands get wider is not surprising given the looser

prior on the By elements. The prior is shifted up because it is now less likely for a small

response to the EBP from a financial uncertainty shock. Given a fixed volatility increase, a

higher variance of the By prior elements makes it more likely that any one volatility will have

a large effect on the EBP, thereby pushing the entire distribution upwards. Large negative

values of the By parameter matrix elements are also more likely from the unconditional

prior, but these draws tend to lead to a violation of the positive sign restriction on the EBP

response.

For the alternative sign restriction that we present in a later section in the appendix, the

upward bias in the EBP is even more extreme with this wide By prior. We have estimated

versions of our model with looser priors on By and do not find much evidence of large

movements in the EBP following either a financial or macro uncertainty shock. Therefore,

we take a conservative approach of putting a tighter prior on the By elements in the EBP

equation.
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C.1.5 Estimation of the CAIW-in-VAR model

As described in section A in this appendix, sampling from the posterior distribution of IRFs

is done by the following decomposition.

p(ψ,Q|Y ) = p(Q|ψ)1{ψ ∈ P(R)}/vol(P(R))︸ ︷︷ ︸
step 2

× p(Y |ψ)p(ψ)/P (Y )︸ ︷︷ ︸
step 1

(A.27)

In this section, we describe the initial prior distribution of ψ (p(ψ)) and the posterior sampler

that generates ψ from the second part (step 1) of this posterior distribution for our empirical

exercises.

The Particle Gibbs sampler is used to generate ψ from its posterior distribution (Creal

and Tsay, 2015; Creal and Wu, 2017).

Posterior sampler The joint posterior distribution of CAIW-in-VAR model is then

p(µy, By,Φy, ν, C,Φ,Σ1:T |Y1:T ) ∝ p(Y1:T |µy, By,Φy, ν, C,Φ,Σ1:T )p(µy, By,Φy, ν, C,Φ,Σ1:T ).

(A.28)

where Y1:T is a vector of observed data.5

The algorithm runs on the following cycles, which generate samples from the conditional

posterior distribution of sub-block of ψ:

1. p(Σ1:T | others) for t = 1, ..., T : Multivariate stochastic volatilities.

2. p(µy, By,Φy| others): Parameter in the conditional mean equation.

3. p(ν| others): Parameter in Wishart process.

4. p(C| others): Parameter in Wishart process.

5. p(Φ| others): Parameter in Wishart process.

5To be more precise, we are also conditioning on the initial lagged observations, Y0, Y−1, ..., Y−p+1 where
p is the number of lags. We take this dependency out from the expression for the notational convenience.
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Step 1: (Σ1:T ) We draw Σ1:T from the full conditional distribution, p(Σ1:T |µy, By,Φy, ν, C,Φ, data),

by the particle Gibbs (PG) sampler. The algorithm starts with previous draws of CAIW-in-

VAR parameters ((µy)old, (By)old, (Φy)old, νold, Cold,Φold) as well as previous covriance matrix

draws Σold
1:T from the previous iteration.

We denote fMVN(y;m,V ) as a density function of the multivariate normal distribution

with mean m and covariance matrix V ; fIW (y;S, ν) be a density function of the inverse

Wishart distribution with scale parameter S and degrees of freedom parameter ν. We sup-

press the superscript “old” in ((µy)old, (By)old, (Φy)old, νold, Cold,Φold) for simplicity.

1. (Initialization) For m = 2, ...,M , generate particles,

Σ
(m)
1 ∼ IW ((ν0 − n− 1)V0, ν0) (A.29)

and Σ
(1)
1 = Σold

1 . Compute the normalized weights

W
(m)
1 =

fMVN(y1;µy +
∑p

i=1 Φy
i y1−i +Bylog(diag(Σ

(m)
1 )),Σ

(m)
1 )∑M

m′=1 fMVN(y1;µy +
∑p

i=1 Φy
i y1−i +Bylog(diag(f(Σ

(m′)
1 )),Σ

(m′)
1 )

, m = 1, 2, ...,M.

(A.30)

2. (Conditional filtering) For t = 2, ..., T ,

(a) For m = 2, ...,M , set Σ̃
(m)
t−1 by resampling particles {Σ(m)

t−1}Mm=1 with probabilities

{W (m)
t−1 }Mm=1. Set Σ̃

(1)
t−1 = Σ

(1)
t−1.

(b) For m = 2, ...,M generate particles

Σ
(m)
t ∼ IW ((ν − n− 1)(C + ΦΣ̃

(m)
t−1Φ′), ν), (A.31)

and Σ
(1)
t = Σold

t .
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(c) Compute the normalized weights

W
(m)
t =

fMVN(yt;µ
h +

∑p
i=1 Φy

i yt−i +Bylog(diag(Σ
(m)
t )),Σ

(m)
t )∑M

m′=1 fMVN(yt;µy +
∑p

i=1 Φy
i yt−i +Bylog(diag(Σ

(m′)
t )),Σ

(m′)
t )

, m = 1, 2, ...,M.

(A.32)

Throughout the iteration, we store
{

Σ
(m)
1:T ,W

(m)
1:T

}M
m=1

where the first particle at each

point in time is set to the variance-covariance from the previous iteration (i.e., Σold
1:T ).

3. (Initialization of the backward simulation) Draw a particle Σnew
T = Σ

(m)
T with proba-

bility W
(m)
T .

4. (Backward simulation) For t = T − 1, T − 2, ..., 1,

(a) For m = 1, 2, ...,M , compute the normalized conditional weights,

W
(m)
t|T =

W
(m)
t fIW (Σnew

t+1 |(ν − n− 1)(C + ΦΣ
(m)
t Φ′), ν)∑M

m′=1W
(m′)
t fIW (Σnew

t+1 |(ν − n− 1)(C + ΦΣ
(m′)
t Φ′), ν)

. (A.33)

(b) Draw a particle Σnew
t = Σ

(m)
t with probability W

(m)
t|T .

The draw Σnew
1:T is a draw from the full conditional distribution.

Step 2: (µy, By,Φy) First we transform our model into the following multiple regression

form,

Ỹt = B̃X̃t + Σ
1/2
t εt, εt ∼ N(0, I)

where p is the number of lags in VAR and

Ỹt = Y ′t

X̃t = [1, Y ′t−1, ..., Y
′
t−p, f(Σt)

′]′

B̃ = [µy,Φy
1, ...,Φ

y
p, B

y].
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Then, we can re-write the equation as

Σ
−1/2
t Ỹt =

(
X̃ ′t ⊗ Σ

−1/2
t

)
vec
(
B̃
)

+ εt,

which is a standard multiple regression with homoscedastic errors. The conditional posterior

distribution of (µy, By,Φy) is a multivariate normal distribution under the conjugate prior

assumption.

Step 3: ν The conditional posterior distribution of ν is

p(ν|others) ∝

(
T∏
t=2

|S−1
t−1|ν/2

2νn/2Γn(ν/2)
|Σt|−(ν+n+1)/2exp

(
−1

2
tr(S−1

t−1Σ−1
t )

))
pG(ν)1(n+2,Mν)(ν)

where S−1
t−1 = (v−n−1)(C+ΦΣt−1Φ′), Γk(·) is the multivariate gamma function, pG(ν)1(n+2,Mν)(ν)

is a term that is proportional to a prior distribution for ν, where pG(ν) is a Gamma dis-

tribution, and 1(n+2,Mν)(ν) is an indicator function takes value 1 if ν ∈ (n + 2,Mν) and 0

otherwise. To generate ν from this conditional posterior distribution, we employ the Griddy

Gibbs algorithm of Ritter and Tanner (1992).

Prior for ν, pG is a Gamma distribution with mean 40 and variance 10. We truncate this

distribution on [n+ 2, 70]. For Griddy Gibbs algorithm, we consider the fixed-width grid on

the support of prior distribution with 500 grid points.

Step 4: C The conditional posterior distribution of C is

p(C|others) ∝

(
T∏
t=2

|S−1
t−1|ν/2|Σt|−(ν+n+1)/2exp

(
−1

2
tr(S−1

t−1Σ−1
t )

))
× pIW (C|df,Ψ)

× pIW
(
Σ1|ν0, V

−1
0

)
, where V −1

0 = (v0 − n− 1)(I − φh)−1µh,
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and S−1
t−1 = (v − n− 1)(C + ΦΣt−1Φ′), and pIW is a density function of the inverse Wishart

distribution. In this step, we reparametrize C in the following fashion,

C =



d11 0 . . . 0

c21 d22 . . . 0

...
. . . 0

ck1 ck2 ck3 . . . dkk





d11 0 . . . 0

c21 d22 . . . 0

...
. . . 0

ck1 ck2 ck3 . . . dkk



′

.

This transformation ensures the positive definiteness of C. To draw C from this conditional

posterior distribution, we employ the random-walk Metropolis-Hastings algorithm with a

proposal

c∗ij = coldij + ec(i,j), ec(i,j) ∼ N(0, σ2
c(i,j))

log(d∗ii) = log(doldii ) + ed(i,i), ed(i,i) ∼ N(0, σ2
d(i,i))

for (i, j) = {i = 1, .., n; j = 1, ..., n, i ≥ j}. The scale of the proposal distribution σ2
c(i,j) and

σ2
d(i,j) are adaptively chosen so that the resulting acceptance rate is about 30% (Atchadé and

Rosenthal, 2005). Note that to compute the acceptance ratio, we need a Jacobian term due

to reparametrization,

|J | = 2n
n∏
i=1

dn+1−i
ii︸ ︷︷ ︸

cholsky decomp.

×
n∏
i=1

dii︸ ︷︷ ︸
log trans.

.

Step 5: A The conditional posterior distribution of Φ is

p(Φ|others) ∝

(
T∏
t=2

|S−1
t−1|ν/2|Σt|−(ν+n+1)/2exp

(
−1

2
tr(S−1

t−1Σ−1
t )

))

× pTN
(
Φ11|mΦ(1,1), VΦ(1,1), 0,∞

) ∏
(i,j)6=(1,1)

pN
(
Φij,mΦ(i,j), VΦ(i,j)

)
× pIW

(
Σ1|ν0, V

−1
0

)
, where V −1

0 = (v0 − n− 1)(I − Φh)−1µh.
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and S−1
t−1 = (v − n − 1)(C + ΦΣt−1Φ′), pTN is a density function of the truncated normal

distribution, and pN is a density function of the normal distribution. Note that the sign of

Φ(1,1) is not identified. Hence, we place the prior distribution over Φ(1,1) > 0.

To draw Φ from this conditional posterior distribution, we employ the element-wise

random-walk Metropolis-Hastings algorithm with a proposal,

Φ∗(i,j) = Φold
(i,j) + wi,j, wi,j ∼ N

(
0, σ2

Φ(i,j)

)
,

where the scale of the proposal distribution σ2
Φ(i,j) is adaptively chosen so that the resulting

acceptance rate is about 30% (Atchadé and Rosenthal, 2005) for each (i, j).
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Figure A-9 Financial uncertainty shock on level variables (Haar)
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This figure shows the pointwise 70% credible set impulse response functions on the level variables to a 1
standard deviation financial uncertainty shock for the small VAR model. The reduced-form parameters are
drawn from their posterior distributions. We assume a Haar prior over the rotation matrices. We only keep
the impulse response functions that satisfy Assumptions Auf , Aum, and Ao. The dark red line is the impulse
response function drawn from a single Q∗ that is closest to the pointwise median in a sum of squares sense
(median target method of Fry and Pagan (2007)).

C.1.6 Posterior results for level variables

In this section, we plot the level responses to all variables following financial (figure A-9)

and macro (figure A-10) uncertainty shocks. Relative to the main text, the only additional

IRF that is included here is for the CPI. As one can see, there is little response to the

prices following either uncertainty shock, and the differences in the responses between the

two uncertainty shocks are negligible.
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Figure A-10 Macro uncertainty shock on level variables (Haar)
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This figure shows the pointwise 70% credible set impulse response functions on the level variables to a 1
standard deviation macro uncertainty shock for the small VAR model. The reduced-form parameters are
drawn from their posterior distributions. We assume a Haar prior over the rotation matrices. We only keep
the impulse response functions that satisfy Assumptions Auf , Aum, and Ao. The dark red line is the impulse
response function drawn from a single Q∗ that is closest to the pointwise median in a sum of squares sense
(median target method of Fry and Pagan (2007)).

C.1.7 Posterior results for log volatility

We discuss here the effects of the financial and macro uncertainty shocks on the log volatility

of the innovations. We find in figures A-11 and A-12 that financial uncertainty shocks lead to

larger increases in industrial production and EBP volatilities relative to macro uncertainty

shocks. Although the credible sets are wide, the posterior median financial uncertainty

impulse response increases the log volatility of the innovation to industrial production by 0.09

and the log volatility of the innovation to the EBP by 0.11. On the other hand, the median
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Figure A-11 Posterior results:
Financial uncertainty shock on log volatility of innovations (Haar)
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This figure shows the pointwise 70% credible set impulse response functions on the log volatility of innovations
to a 1 standard deviation financial uncertainty shock for the small VAR model. The reduced-form parameters
are drawn from their posterior distributions. We assume a Haar prior over the rotation matrices. We only
keep the impulse response functions that satisfy Assumptions Auf , Aum, and Ao. The dark blue line is the
impulse response function drawn from a single Q∗ that is closest to the pointwise median in a sum of squares
sense (median target method of Fry and Pagan (2007)).

response for macro uncertainty shocks only reach to 0.06 for industrial production innovation

log volatility and 0.06 for EBP innovation log volatility on impact. The persistence of excess

bond premium volatility is also higher for financial uncertainty shocks. The responses for

CPI and federal funds rate volatilities are similar across the two volatility shocks.
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Figure A-12 Posterior results:
Macro uncertainty shock on log volatility of innovations (Haar)
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This figure shows the pointwise 70% credible set impulse response functions on the log volatility of innovations
to a 1 standard deviation macro uncertainty shock for the small VAR model. The reduced-form parameters
are drawn from their posterior distributions. We assume a Haar prior over the rotation matrices. We only
keep the impulse response functions that satisfy Assumptions Auf , Aum, and Ao. The dark blue line is the
impulse response function drawn from a single Q∗ that is closest to the pointwise median in a sum of squares
sense (median target method of Fry and Pagan (2007)).

C.1.8 Posterior results for forecast error variances

Figures A-13 and A-14 show the effects of financial and macro uncertainty shocks on the

forecast error variances of variables (FEV). The FEV of all four variables increase in a persis-

tent manner in response to both financial and macro uncertainty shocks. Even at a horizon

of 3 years, there is evidence across the board that the forecastability of the variables has

declined. Overall, we find that the financial uncertainty shock generates a larger increase
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Figure A-13 Posterior results:
Financial uncertainty shock on forecast error variances of variables (Haar)
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This figure shows the pointwise 70% credible set impulse response functions on the forecast error variance of
the variables to a 1 standard deviation financial uncertainty shock in the small VAR model. The reduced-
form parameters are drawn from their posterior distributions. We assume a Haar prior over the rotation
matrices. We only keep the impulse response functions that satisfy Assumptions Auf , Aum, and Ao. The
dark green line is the impulse response function drawn from a single Q∗ that is closest to the pointwise
median in a sum of squares sense (median target method of Fry and Pagan (2007)).

in the FEV for industrial production, the consumer price index, and the excess bond pre-

mium. Of particular interest are the FEV responses of industrial production and the excess

bond premium. At the posterior median impulse response function, industrial production

uncertainty is around 1/3 higher after 3 years following the financial uncertainty shock when

compared to the macro uncertainty shock. As one may expect, the largest relative differences

in the FEV occur for the excess bond premium, where the upper bounds of the 70% credible

sets are up to 50% higher after 1 year following a financial uncertainty shock.
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Figure A-14 Posterior results:
Macro uncertainty shock on forecast error variances of variables (Haar)
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This figure shows the pointwise 70% credible set impulse response functions on the forecast error variance of
the variables to a 1 standard deviation macro uncertainty shock in the small VAR model. The reduced-form
parameters are drawn from their posterior distributions. We assume a Haar prior over the rotation matrices.
We only keep the impulse response functions that satisfy Assumptions Auf , Aum, and Ao. The dark green
line is the impulse response function drawn from a single Q∗ that is closest to the pointwise median in a sum
of squares sense (median target method of Fry and Pagan (2007)).
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C.1.9 Comparison of posterior median and median target method

We present a comparison between the posterior pointwise median and the median target

method of Fry and Pagan (2007) as measures of central tendency of the credible set. The

discussion of our implementation of the median target method can be found in the ”Point

estimator” subsection of section A.1 (Fully Bayesian approach with a flat prior).

Figure A-15 shows a comparison between the posterior pointwise median response (dark

solid red line) and the response using the median target method for a financial uncertainty.6

To give a sense of the scale of uncertainty around the IRFs, we also show the 70% credible

sets assuming a conditional Haar prior, which give us the tightest credible sets among the

methods we consider. We find that differences between the posterior pointwise median

response and the median target method response is negligible.

6The results from the macro uncertainty shock (not shown) convey the same picture.
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Figure A-15 Posterior results:
Financial uncertainty shock on level variables (Haar)
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This figure shows the pointwise 70% credible set impulse response functions on the level variables to a 1
standard deviation macro uncertainty shock for the small VAR model. We assume a Haar prior over the
rotation matrices. We only keep the impulse response functions that satisfy Assumptions Auf ,Aum, and
Ao. The dark red line is the pointwise median response. The dark red dotted line is the impulse response
function drawn from a single Q∗ that is closest to the pointwise median in a sum of squares sense (median
target method of Fry and Pagan (2007)).

C.1.10 The identified set at the posterior mean

To give a further sense of the impact of the Haar prior on our results, we present a comparison

of the identified set and the 70% credible bands implied by the Haar prior at the posterior

mean (Moon et al. (2017)).7

7We take 20, 000 Q proposals from a Haar distribution. We construct the identified set as the maximum
and minimum of the accepted proposals.
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Figure A-16 Financial uncertainty shock on level variables (Haar prior vs identified
set at the posterior mean)

Industrial production

0 6 12 18 24 30 36
Months

-0.6

-0.4

-0.2

0

0.2

P
er

ce
nt

Federal funds rate

0 6 12 18 24 30 36
Months

-0.15

-0.1

-0.05

0

0.05

0.1

A
nn

 p
er

ce
nt

Consumer price index

0 6 12 18 24 30 36
Months

-0.05

0

0.05

0.1

0.15

P
er

ce
nt

Excess bond premium

0 6 12 18 24 30 36
Months

-0.01

0

0.01

0.02

0.03
A

nn
 p

er
ce

nt

This figure shows the identified set (light red) versus the 70% credible set assuming a Haar prior (dark red)
impulse response functions on the level variables to a 1 standard deviation financial uncertainty shock for
the small VAR model. The pink shaded area represents a hypothetical ”middle 70%” of the identified set at
every horizon. To construct the pink shaded area, for each horizon, we find the midpoint of the identified
set and then add/subtract 35% of the total length of the identified set to each side of the midpoint. The
reduced-form parameters are fixed at their posterior means. We only keep the impulse response functions
that satisfy Assumptions Auf ,Aum, and Ao.

Figure A-16 shows the identified sets at the posterior mean for a financial uncertainty

shock (light red interval). No movement in industrial production is consistent with the

financial uncertainty shock for the first year after the shock. The identified set begins

to shrink in the medium and long run, however, with the set lying between −0.03% and

−0.53% after two years. There is marginal evidence of an increase in the CPI for around

1 year financial uncertainty shock, although the effect in the long run appears transient.
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Figure A-17 Macro uncertainty shock on level variables (Haar prior vs identified
set at the posterior mean)
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This figure shows the identified set (light red) versus the 70% credible set assuming a Haar prior (dark red)
impulse response functions on the level variables to a 1 standard deviation financial uncertainty shock for
the small VAR model. The pink shaded area represents a hypothetical ”middle 70%” of the identified set at
every horizon. To construct the pink shaded area, for each horizon, we find the midpoint of the identified
set and then add/subtract 35% of the total length of the identified set to each side of the midpoint. The
reduced-form parameters are fixed at their posterior means. We only keep the impulse response functions
that satisfy Assumptions Auf ,Aum, and Ao.

The identified set of the federal funds rate response also includes 0%, although a decline

of around −0.12% is also consistent with the data. Finally, the identified set of the EBP

response shows the looseness of the sign restriction. The EBP increases on impact, with

values ranging from near 0% to 0.011% all possible. After 5 months, however, the identified

set includes 0%.

Figure A-17 shows the results from a macro uncertainty shock. The identified sets are
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similarly wide. Comparing these identified sets to those from a financial uncertainty shock,

we see evidence that the macro uncertainty shock’s identified set of the IRF is consistent with

no response in industrial production for the entire horizon considered. After one year, the

magnitudes of the difference between the identified sets are substantial as well: the identified

set is between −0.59% and −0.01% for the financial uncertainty shock versus −0.50% and

0.15% for the macro uncertainty shock. Moreover, the macro uncertainty shock’s identified

set for the federal funds rate is more symmetric as well, with relatively equal amounts of

mass placed on increases and decreases. The identified set on the excess bond premium is

likewise wide around 0%.

The darker red shaded areas show the 70% credible sets at the posterior mean assuming

a Haar prior. By comparing the darker red areas with the lighter red ones, we get a sense

of how much information the Haar prior is introducing. In our case, we see that the Haar

prior credible sets of the IRFs are tighter than the identified sets, as would be expected when

introducing a prior distribution for Q. It is the case, however, that the IRFs assuming a

Haar prior generally maintain the same shape as the identified sets and generally shrink the

upper and lower bounds of the set by approximately equal amounts.

Another useful comparison to show these facts is by comparing the dark red area to the

pink shaded area. This pink shaded area is a hypothetical pointwise ”middle 70%” of the

identified set. A way to interpret this interval is if one were to assume a uniform prior

over the length of the identified set at each horizon of the IRF, this set would be the 70%

credible set over this prior. One important point to emphasize is that this set in fact does

not correspond to any prior distribution over the rotation matrix, in accordance with the

results of Baumeister and Hamilton (2015). It is simply a way to compare the Haar prior

assumption with an impossible “uniform prior at every horizon” IRF. One sees that indeed

the Haar prior induces a tighter credible set relative to this uniform benchmark. However,

one can more clearly see that the Haar prior preserves the general shape of the IRFs and it

also in general places most of its mass near the center of the identified set.
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Before we close the discussion on the comparison, it is important to point out that the basic

qualitative conclusions about the relative effects of financial and macro uncertainty shocks

continue to hold whether one looks at the identified set at the posterior mean or the Haar

prior conditional on the posterior mean of ψ. The identified sets for the financial uncertainty

shock are shifted lower for industrial production and the federal funds rate relative to those

for the macro uncertainty shock.
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Figure A-18 Posterior results:
Financial uncertainty shock on level variables (Prior robust)
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This figure shows the pointwise 70% credible set prior robust impulse response functions on the level variables
to a 1 standard deviation financial uncertainty shock for the small VAR model. The reduced-form parameters
are drawn from their posterior distributions. We only keep the impulse response functions that satisfy
Assumptions Auf ,Aum, and Ao. The dark red line is the posterior mean bounds.

C.1.11 Prior robust results

In this subsection, we keep the same set of sign restrictions (Assumptions Auf , Aum, and

Ao), but instead of assuming a Haar prior over the rotation matrices, we assume a prior

robust setup as in Giacomini and Kitagawa (2015).

Insisting on robustness to all possible priors over the rotation matrices widens the credible
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Figure A-19 Posterior results:
Macro uncertainty shock on level variables (Prior robust)
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This figure shows the pointwise 70% credible set prior robust impulse response functions on the level variables
to a 1 standard deviation macro uncertainty shock for the small VAR model. The reduced-form parameters
are drawn from their posterior distributions. We only keep the impulse response functions that satisfy
Assumptions Auf ,Aum, and Ao. The dark red line is the posterior mean bounds.

sets of the IRFs for both financial and macro uncertainty shocks. Looking at figures A-18

and A-19, we see that all impulse response functions now cover 0% for both uncertainty

shocks. This result underscores the importance of measuring financial and macro volatility

well when applying prior robust sign restrictions, which is the motivating reason for us to

consider a large-scale volatility model as in Carriero et al. (2017). A less accurate measure

of volatility may make inference of its real effects more uncertain, which additionally widens

the credible sets.

Nevertheless, when comparing the credible sets between the two uncertainty shocks, the
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important qualitative conclusions from our results in the main text continue to hold. The

credible sets of industrial production and the federal funds rate responses are shifted down-

wards following a financial uncertainty shock when compared to a macro uncertainty shock.

Therefore, we can still say that there is more evidence that a financial uncertainty shock

leads to a decline in the economy relative to a macro uncertainty shock.

C.1.12 Alternative scaling of IRF

In the main draft of the paper, we present impulse response functions to 1 standard deviation

financial and macro uncertainty shocks. By considering 1 standard deviation structural

shocks, we compare structural shocks with equal size. An alternative empirical exercise we

perform is to investigate the effects of financial and macro uncertainty shocks that lead to

equal increases in average volatility (i.e., equal impact). We do this by adjusting the size

of the structural shocks such that they lead to, on average, 10% increases in the volatilities

(variance) on impact of observables. More specifically, we set the size of the i-th uncertainty

shock to si such that the following relationship holds:

10% =
1

n

n∑
j=1

(
E[hj,t|v∗i,t = si;Rt, ψ]− E[hj,t|v∗i,t = 0;Rt, ψ]

E[hj,t|v∗i,t = 0;Rt, ψ]
× 100

)
, (A.34)

where Rt = chol(Ω(ht−1;ω))Q and Q ∈ Q(ψ,R). This normalization scheme implies that

the average (across observables) percentage point impact of financial and macro uncertainty

shocks are the same in the initial period.

As we will see below, this alternative exercise enables us to further decompose the differ-

ence in effects of financial and macro uncertainty shocks. We note that structural financial

uncertainty shocks lead to larger increases in average volatility relative to the same-sized

structural macro uncertainty shock.8 We view this as an outcome of the estimation in con-

8Figure A-20 shows the distributions of the scaling factors si for the financial and macro uncertainty
shocks assuming a conditional Haar prior. That the distribution of the scaling factor for the macro uncer-
tainty shocks is to the right of the one for the financial uncertainty shocks means that larger structural macro
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Figure A-20 Posterior results:
Histogram of scaling factors (Blue: si for financial uncertainty shocks, Red: si
for macro uncertainty shocks) (Haar)

This figure shows the posterior distributions of the scaling factors si needed for financial (blue) and macro
(red) uncertainty shocks to produce 10% average increases in volatility.

junction with our identifying assumptions for the two structural uncertainty shocks. In this

exercise, however, we ask: given the same increase in average volatility, how large are the

real effects of financial and macro uncertainty shocks? We continue to find more evidence

that financial uncertainty shocks lead to declines in industrial production relative to macro

uncertainty shocks. These results suggest that the more negative real effects from financial

uncertainty shocks not only come from the fact that they produce larger increases in average

volatility, but also because the composition of the volatility increases implied by the sign

restrictions are more impactful to the real economy.

It is important to remember, however, that even though this exercise is quite useful to

understand our main empirical results, it is difficult to map these results into a statement

uncertainty shocks are needed to hit the 10% average volatility increase. The same qualitative picture holds
for the prior robust results.
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about the current and future impact of financial and macro uncertainty shocks on the U.S.

economy, as these 10% average increases in volatility are generated by potentially different-

sized structural uncertainty shocks (as figure A-20 also shows). Specifically, in simulations

from the model economy, the plausibility or likelihood of seeing such increases in volatility

may differ across the structural shocks.

In this section, we consider the small-scale VAR (example 1 in the main text), and present

IRFs based on the fully Bayesian approach with the conditional Haar prior as well as the

robust Bayesian approach.

Results. Figure A-21 shows the 70% credible set effects of financial and macro uncertainty

shocks that lead to 10% average increases in volatility, assuming a conditional Haar prior.

Our main results remain true in that the effects of financial uncertainty shocks on IP are

larger than those of macro uncertainty shocks even after the average volatility normalization.

Figure A-22, which shows the 70% prior robust credible set effects of such uncertainty

shocks, tells us that this result is not driven by the Haar prior. By imposing our sign

restrictions, the 70% prior robust credible set for IP to the financial uncertainty shocks

truncates the positive region more aggressively, which leads to the differences we see in the

IRFs in figure A-21. However, the lower bounds of the prior robust credible sets become more

similar, which is different from what we find in the IRFs that specify equal-sized structural

uncertainty shocks (figures A-17 and A-18).

In percentage point terms, financial uncertainty shocks tend to increase EBP volatility

relatively more than they increase the volatilities of the other variables. The same is not true

for macro uncertainty shocks that have the same average volatility impact. This larger rela-

tive increase in spread volatility leads to more evidence of a decline in industrial production

following financial uncertainty shocks.

In sum, our main finding that financial uncertainty shocks have larger negative effects

on IP is driven by two factors. First, controlling for the volatility size of the uncertainty
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Figure A-21 Posterior results:
Effects of uncertainty shocks that lead to a 10% average increase in volatility
(Haar)
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This figure shows the pointwise median and 70% credible set impulse response functions on industrial pro-
duction to a a financial and macro uncertainty shock that each lead to a 10% increase in industrial production
volatility (variance) for the small VAR model. We assume a Haar prior over the rotation matrices. The
reduced-form parameters are drawn from their posterior distributions.

shocks, the composition of the increase in volatility from financial uncertainty shocks rule

out positive responses of IP. Second, a one standard deviation financial uncertainty shock

leads to a larger overall volatility response and lowers the lower bound of the IP responses.
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Figure A-22 Posterior results:
Effects of uncertainty shocks that lead to a 10% average increase in volatility
(Prior robust)

Financial uncertainty shock

Industrial production

Federal funds rate

Macro uncertainty shock

Industrial production

Federal funds rate

This figure shows the pointwise 70% credible set prior robust impulse response functions (light pink) on
industrial production to a a financial and macro uncertainty shock that each lead to a 10% average increase
in volatility (variance) for the small VAR model. We present the pointwise posterior mean bounds (dark
pink). The reduced-form parameters are drawn from their posterior distributions.

C.1.13 Results from a traditional sign restriction on the EBP response

An alternative sign restriction that we consider is one on the signs of the EBP response to

the two uncertainty shocks. Specifically, we consider the following sign restriction:
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Assumption A3
uf (Financial uncertainty shock). The uncertainty shock satisfies A3

uf,1

and A3
uf,2:

A3
uf,1 : IRF [Σii,t+h|v∗t = e1;Rt] > 0 for h = 0 and i = 1, 2, 3, 4.

A3
uf,2 : IRF [EBPt+h|v∗t = e1;Rt] > 0 for h = 0, 1, 2.

Assumption A3
um (Macro uncertainty shock). The uncertainty shock satisfies A3

um,1

and A3
um,2:

A3
um,1 : IRF [Σii,t+h|v∗t = e2;Rt] > 0 for h = 0 and i = 1, 2, 3, 4.

A3
um,2 : IRF [EBPt+h|v∗t = e2;Rt] < 0 for h = 0, 1, 2.

Assumption A3
o (Other second moment shocks).

A3
0 : For each j 6= 1, 2, at least one of the conditions specified in

A3
uf,1,A3

uf,2and at least one in A3
um,1,A3

um,2 does not hold.

This assumption says that a financial uncertainty shock must increase the EBP for 2

months in addition to increasing aggregate volatility on impact. On the other hand, a

macro uncertainty shock decreases the EBP for 2 months in addition to increasing aggregate

volatility on impact. Similar to Example 1 in the main text, we impose an additional

assumption A3
o to ensure that there within each Q we consider, there is a unique financial

and macro uncertainty shock.

The motivation for this sign restriction is similar to that for the sign restriction in the

main text. Namely, through the lens of a structural model with financial frictions, insofar as

a financial uncertainty shock reduces the incentive to invest and a macro uncertainty shock

increases the incentive to invest, spreads should increase from a financial uncertainty shock

and decrease from a macro uncertainty shock.
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Prior implications for the impulse response functions Figures A-23 and A-24 show

the prior-implied level impulse response functions following a financial and macro uncertainty

shock, respectively. There are several important similarities between these IRFs and those

from the sign restrictions in the main text. First, it is still the case that our sign restrictions

do not bias the sign of the responses on IP, the CPI, or the federal funds rate. There is still

a bias in the excess bond premium from the sign restriction. Indeed, as the sign restrictions

on the EBP are assumed to hold for 2 months after the financial or macro uncertainty

shocks, the lower 5% (upper 95%) bounds of the credible sets after the financial and macro

uncertainty shocks reach 0.01 (−0.01%) by month 2, thereby ruling out smaller responses

of the EBP to the two uncertainty shocks. By the third and fourth months, however, the

credible sets begin to include both positive and negative responses in the EBP, although the

effects of the sign restrictions still remain.

Figures A-25 and A-26 show the log volatility responses to the two uncertainty shocks.

Like before, the prior puts mass on a wide range of responses to both uncertainty shocks.

There is an important difference from before, however, in the prior behavior of the IRFs

with the alternative sign restrictions. Specifically, a financial uncertainty shock now no

longer leads to larger increases in volatility relative to a macro uncertainty shock. This is

because a financial uncertainty shock no longer must lead to a larger increase in the EBP

than a macro uncertainty shock does. It is this relative sign restriction that tends to generate

larger volatility moves following a financial uncertainty shock. This has implications for the

width of the level IRFs as well. We note that the alternative sign restriction does not lead

to a looser IRF restriction for the financial uncertainty shock when compared to the macro

uncertainty shock. Indeed, financial and macro uncertainty shocks both have a 5% − 95%

range of around 1.6%.

Posterior results Figures A-27 and A-28 show the posterior results from the two uncer-

tainty shocks. Many of the same qualitative conclusions continue to hold. For instance, a
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Figure A-23 Prior results:
Financial uncertainty shock on level variables (Haar)
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This figure shows the pointwise 90% credible set impulse response functions on the level variables to a 1
standard deviation financial uncertainty shock for the small VAR model. The reduced-form parameters are
drawn from their prior distributions. We assume a Haar prior over the rotation matrices. We only keep
the impulse response functions that satisfy Assumptions A3

uf ,A3
um,A3

o. The dark red line is the impulse
response function drawn from a single Q∗ that is closest to the pointwise median in a sum of squares sense
(median target method of Fry and Pagan (2007)).

financial uncertainty shock leads to a deeper and more immediate decline in industrial pro-

duction when compared to a macro uncertainty shock. In fact, for the first two years after

the macro uncertainty shock, the 70% credible set contains 0%. Additionally, the second

panels of the two figures show that both uncertainty shocks continue to have little impact

on the CPI.

Although the federal funds rate movements are not significant following either the financial

or macro uncertainty shock, we do find that there is more evidence of a decline in the federal
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Figure A-24 Prior results:
Macro uncertainty shock on level variables (Haar)
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This figure shows the pointwise 90% credible set impulse response functions on the level variables to a 1
standard deviation financial uncertainty shock for the small VAR model. The reduced-form parameters are
drawn from their prior distributions. We assume a Haar prior over the rotation matrices. We only keep
the impulse response functions that satisfy Assumptions A3

uf ,A3
um,A3

o. The dark red line is the impulse
response function drawn from a single Q∗ that is closest to the pointwise median in a sum of squares sense
(median target method of Fry and Pagan (2007)).

funds rate following a financial uncertainty shock. The posterior median decline is around

−0.03% after 2 years. In contrast, the posterior median shows an increase in the federal

funds rate of over 0.05% following a macro uncertainty shock.

One final interesting note is the response of the EBP to the two uncertainty shocks. While

the sign restrictions separating the financial and macro uncertainty shocks are symmetric,

we do find a different posterior response across the two uncertainty shocks. A financial

uncertainty shock leads to a persistent increase in the excess bond premium. The 70%
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Figure A-25 Prior results:
Financial uncertainty shock on log volatility of innovations (Haar)
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This figure shows the pointwise 90% credible set impulse response functions on the log volatility of innovations
to a 1 standard deviation financial uncertainty shock for the small VAR model. The reduced-form parameters
are drawn from their prior distributions. We assume a Haar prior over the rotation matrices. We only keep
the impulse response functions that satisfy Assumptions A3

uf ,A3
um,A3

o. The dark blue line is the impulse
response function drawn from a single Q∗ that is closest to the pointwise median in a sum of squares sense
(median target method of Fry and Pagan (2007)).

credible sets do not include 0% nearly one year. On the other hand, a macro uncertainty

shock leads to a much more transitory decline in the EBP. After 3 months, the impulse

response function includes 0% at the 70% level.

Finally, we also look at the volatility responses to the two uncertainty shocks, shown in

figures A-29 and A-30. Relative to a macro uncertainty shock, a financial uncertainty shock

produces a larger and more persistent response in EBP volatility. The volatility movements

for innovations in the other three series are generally similar, although there is evidence of
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Figure A-26 Prior results:
Macro uncertainty shock on log volatility of innovations (Haar)
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This figure shows the pointwise 90% credible set impulse response functions on the log volatility of innovations
to a 1 standard deviation macro uncertainty shock for the small VAR model. The reduced-form parameters
are drawn from their prior distributions. We assume a Haar prior over the rotation matrices. We only keep
the impulse response functions that satisfy Assumptions A3

uf ,A3
um,A3

o. The dark blue line is the impulse
response function drawn from a single Q∗ that is closest to the pointwise median in a sum of squares sense
(median target method of Fry and Pagan (2007)).

a larger movement in federal funds rate volatility following a macro uncertainty shock.
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Figure A-27 Posterior results:
Financial uncertainty shock on level variables (Haar)
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This figure shows the pointwise 70% credible set impulse response functions on the level variables to a 1
standard deviation financial uncertainty shock for the small VAR model. The reduced-form parameters are
drawn from their posterior distributions. We assume a Haar prior over the rotation matrices. We only keep
the impulse response functions that satisfy Assumptions A3

uf ,A3
um,A3

o. The dark red line is the impulse
response function drawn from a single Q∗ that is closest to the pointwise median in a sum of squares sense
(median target method of Fry and Pagan (2007)).
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Figure A-28 Posterior results:
Macro uncertainty shock on level variables (Haar)
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This figure shows the pointwise 70% credible set impulse response functions on the level variables to a 1
standard deviation macro uncertainty shock for the small VAR model. The reduced-form parameters are
drawn from their posterior distributions. We assume a Haar prior over the rotation matrices. We only keep
the impulse response functions that satisfy Assumptions A3

uf ,A3
um,A3

o. The dark red line is the impulse
response function drawn from a single Q∗ that is closest to the pointwise median in a sum of squares sense
(median target method of Fry and Pagan (2007)).
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Figure A-29 Posterior results:
Financial uncertainty shock on log volatility of innovations (Haar)
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This figure shows the pointwise 70% credible set impulse response functions on the log volatility of innovations
to a 1 standard deviation financial uncertainty shock for the small VAR model. The reduced-form parameters
are drawn from their posterior distributions. We assume a Haar prior over the rotation matrices. We only
keep the impulse response functions that satisfy Assumptions A3

uf ,A3
um,A3

o. The dark blue line is the
impulse response function drawn from a single Q∗ that is closest to the pointwise median in a sum of squares
sense (median target method of Fry and Pagan (2007)).
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Figure A-30 Posterior results:
Macro uncertainty shock on log volatility of innovations (Haar)
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This figure shows the pointwise 70% credible set impulse response functions on the log volatility of innovations
to a 1 standard deviation macro uncertainty shock for the small VAR model. The reduced-form parameters
are drawn from their posterior distributions. We assume a Haar prior over the rotation matrices. We only
keep the impulse response functions that satisfy Assumptions A3

uf ,A3
um,A3

o. The dark blue line is the
impulse response function drawn from a single Q∗ that is closest to the pointwise median in a sum of squares
sense (median target method of Fry and Pagan (2007)).
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C.1.14 Stochastic volatility estimates

Estimated stochastic volatility (standard deviations) series are presented in figure A-31. The

posterior moments of Σ1:T (median, 15% and 85% quantiles) are based on the marginal poste-

rior distribution of Σ1:T obtained by marginalizing the following joint posterior distribution,

p(ψ,Q|Y ) ∝ p(Y |ψ){ψ ∈ P(R)}p(ψ)p(Q|ψ). (A.35)

Posterior draws from this joint posterior distribution are given by the algorithm described

in the section A.1.

Figure A-31 Estimated stochastic volatilities (log volatility) of innovations

Industrial production

Federal funds rate

Consumer price index

Excess bond premium

This figure shows the stochastic volatility estimates (log volatility) of the innovations. The shaded areas
show the pointwise 70% credible sets. The dark blue line is the posterior median.
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C.1.15 Convergence of the posterior sampler

To check whether our posterior sampling algorithm has converged or not, we compute and

report Gelman-Rubin diagnostic statistics (Gelman and Rubin, 1992; Brooks and Gelman,

1997) for the our first application (CAIW-in-VAR model, section C.1.5).

Procedure.

1. We run the posterior sampler for ψ described in section C.1.5 with initial value close

to the center of the prior distribution described in section C.1.3. We obtain 10,000,000

posterior draws of ψ. Then, we compute posterior mean and posterior variance of ψ

using these posterior draws.

2. We set a starting value of the posterior sampler by drawing from the multivariate

normal distribution with the mean from the step 1 and the variance four times larger

than the posterior variance from the step 1. We did three sets of experiments

(a) Run 20 different MCMC chains (of length 200,000 draws) from the posterior

sampler.

(b) Run 10 different MCMC chains (of length 500,000 draws) from the posterior

sampler.

(c) Run 10 different MCMC chains (of length 100,000 draws) from the posterior

sampler.

3. Compute Gelman-Rubin diagnostic statistics (Gelman and Rubin, 1992; Brooks and

Gelman, 1997).

Essentially, we run the posterior sampler on the same data set used in our empirical exercise

in section 5.1. The Gelman-Rubin statistic is based on the comparison of within-chain

variance and cross-chain variance of draws from the posterior sampler.
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Results. Table A-1, Table A-2, and Table A-3 report the Gelman-Rubin diagnostic statis-

tic. We compute Gelman-Rubin statistic for each elements in parameters ψr = (By,Φy, µy,Φ, C, ν).

Because there are many elements in each parameter, we report median, 90% quantile and

maximum statistics (largest and second largest) among elements in each By,Φy, µy,Φ, C, ν.

For each chain, we generate 200,000 posterior draws saving parameter for every 20 draws

in the first experiment. We generate 500,000 posterior draws saving parameter for every 50

draws in the second experiment. We generate 100,000 posterior draws for every 20 draws

in the third experiment. To compute Rc, we discard the first 10% of draws from the kept

posterior draws.

In theory,
√
Rc should be close to 1 as the posterior sampler converges to its invari-

ant distribution and numbers less than 1.1 are oftentimes regarded as an indicator for the

convergence of the posterior sampler.

As can be seen from the tables A-1, A-2, and A-3, the
√
Rc statistics are less than 1.1 for

most of the cases, indicating that the posterior sampler converged. For experiment 3, there

are only two parameters (out of 245 parameters) that have slightly larger
√
Rc than 1.1. For

other cases, all
√
Rc statistics are less than 1.1. We produce the Figures in the main text

based on the draws from the first experiment while we produce the Figures in the appendix

based on the draws from the third experiment. In practice, the results are quantitatively

similar regardless of whether we use draws from experiment 1 or experiment 3.
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Table A-1 Gelman-Rubin’s
√
Rc, Experiment 1

Median 90% quantile Largest Second largest Total number of elements

Φ 1.00 1.01 1.02 1.01 16
C 1.00 1.01 1.01 1.01 16
ν 1.00 1.00 1.00 1.00 1
µy 1.00 1.00 1.00 1.00 4
By 1.00 1.01 1.03 1.01 16
Φy 1.00 1.00 1.02 1.02 192

Table A-2 Gelman-Rubin’s
√
Rc, Experiment 2

Median 90% quantile Largest Second largest Total number of elements

Φ 1.00 1.01 1.01 1.01 16
C 1.00 1.01 1.01 1.01 16
ν 1.00 1.00 1.00 1.00 1
µy 1.00 1.00 1.00 1.00 4
By 1.00 1.02 1.03 1.02 16
Φy 1.00 1.00 1.01 1.01 192

Table A-3 Gelman-Rubin’s
√
Rc, Experiment 3

Median 90% quantile Largest Second largest Total number of elements

Φ 1.01 1.02 1.05 1.02 16
C 1.00 1.03 1.06 1.03 16
ν 1.00 1.00 1.00 1.00 1
µy 1.01 1.02 1.02 1.01 4
By 1.01 1.05 1.19 1.05 16
Φy 1.00 1.00 1.10 1.09 192
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C.2 Example 2: Carriero et al. (2017) model

We begin by presenting the complete model of Carriero et al. (2017), which is as follows:

Yt = Φ(L)Yt−1 + Πm(L) logmt + Πf (L) log ft + vt

vt = A−1Λ0.5
t εt, εt ∼ N(0, I)

log λj,t =


βm,j logmt + log hj,t, j = 1, ..., nm

βf,j log ft + log hj,t, j = nm + 1, ..., n

log hj,t = γj,0 + γj,1 log hj,t−1 + ej,t, ej,t ∼ N(0, φj)

where logmt is the macro volatility factor, log ft is the financial volatility factor, log hj,t

capture idiosyncratic series-specific volatility shocks, and A−1 is a lower triangular matrix.

The parameters Φ(L),Πm(L), and Πf (L) are lag polynomials. We follow the specification in

Carriero et al. (2017) and allow for 6 lags in the VAR Φ(L) and 2 lags for the uncertainty

factors in the conditional mean Πm(L) and Πf (L).

The financial and macro volatility factors are the key objects of interest for our purposes.

By assumption, the macro volatility factor loads onto the volatilities of 18 macro variables,

as defined by Carriero et al. (2017). This means that βm is nonzero only for the first nm

data series. The financial volatility factor loads onto the volatilities of 12 financial variables.

Therefore, βf is nonzero only for the last n − nm series.9 The two factors are modeled as

a VAR(2). Importantly, the δ matrix allows for past values of level variables to impact

volatilities, which helps control for endogenous movements in volatility not from volatility

shocks.

9The data series contained in each category is in a later section of the appendix appendix. One can also
find them in the Carriero et al. (2017) paper.
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logmt

log ft

 = D(L)

logmt−1

log ft−1

+

δ′m
δ′f

 yt−1 +

um,t
uf,t

 ,
um,t
uf,t

 ∼ N(0,Φu)

C.2.1 Prior specification

Carriero et al. (2017) use Bayesian methods to estimate the model. The model is completed

by specifying prior distributions on the parameters. As the draws from the posterior distri-

bution are directly made available in the data appendix of the published version of the paper,

we do not reestimate the model. For the purposes of the analysis of the prior implications

for the impulse response functions, however, we must construct the prior.

We follow closely Appendix A.1 in the working paper version of Carriero et al. (2017).

Note that in analyzing the prior implications of the impulse response functions to the

volatility shocks, we only need to consider the priors for the conditional mean parameters

Φ(L),Πm(L),Πf (L) and the volatility parameters D(L), δ,Φu. Therefore, in our discussion

of the prior, we focus on these parameters.

The priors for all parameters in the conditional mean equation (Φ(L),Πm(L),Πf (L)) are

specified in a Minnesota-type fashion centered around 0 with diagonal variance covariance

matrix. For lag l of the logmt and log ft terms in equation i, we use prior variances of
θ23σ

2
i

l2
.

For lag l of variable j in equation i, we use prior variances of
θ21
l2

if i = j and
θ21θ

2
2

l2
σ2
i

σ2
j

otherwise.

We set θ1 = 0.2, θ2 = 0.5, θ3 = 1000. To determine the σi terms, we use estimates of the

standard deviations from equation-by-equation AR(6) models.10

For the parameters in the volatility equation, we choose normal distributions with diagonal

variance covariance matrix for D(L) and δ. D(1) has a mean at a diagonal matrix with

diagonal elements 0.8. D(L) for L > 1 and δ parameters have mean 0. The variances of all

elements in D(L) are 0.04. The variances of all elements in δ are 0.16. For Φu we choose

10Following Carriero et al. (2017), we first standardize each series to have 0 mean and unit variance.
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Table A-4 Prior results:
Impact effects of financial and macro uncertainty shocks (prior robust)

Fin unc Macro unc
15% 85% 15% 85%

IP (%) −91.9 96.7 −95.1 94.7
PCE (%) −24.0 23.1 −26.3 23.9
Federal funds rate (annualized %) −70.0 70.1 −68.3 71.4
Spread, Baa-10y Treasury (annualized %) −18.4 30.2 −30.1 18.6
Macro volatility −0.10 0.11 0.11 0.00
Financial volatility 0.00 0.11 −0.11 0.11

This table shows the 70% prior robust credible sets on impact to a 1 standard deviation financial uncertainty
and macro uncertainty shock in the Carriero et al. (2017) model. The reduced-form paramters are drawn from
the prior distributions of the model. We only keep the impulse response functions that satisfy Assumptions
A2

uf and A2
um.

an inverse Wishart distribution with mean 0.01 times the identity matrix and degrees of

freedom 10.

Prior implications for the impulse response functions The priors of Carriero et al.

(2017) lead to wide prior distributions for both financial and macro uncertainty shocks

identified by prior robust sign restrictions. Table A-4 shows the 70% credible sets for the

impact effects of both uncertainty shocks. One can see that the especially loose priors

on Πm(L) and Πf (L) lead to an extremely large range of possible responses of the level

variables to both uncertainty shocks. The ranges appear comparable across the shocks

and there does not seem to be any notable bias in the signs as well on the variables in

which the sign restrictions are not directly imposed. In fact, even the credible set for the

spreads has sufficient coverage of both positive and negative values. For the volatilities, the

restrictions on the financial uncertainty shock does not seem to lead to any bias on the macro

volatility factor, and vice versa. From these results, we are comfortable that our prior robust

restrictions are extremely loose.
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Macroeconomic variables Financial variables
All employees, total nonfarm (∆ log) S&P500 (∆ log)
Industrial production index (∆ log) Spread, Baa-10y Treasury
Capacity utilization: manufacturing (∆) Excess return
Help wanted to unemployed ratio (∆) SMB FF factor
Unemployment rate (∆) HML FF factor
Real personal income (∆ log) Momentum factor
Weekly hours: goods-producing R15-R11
Housing starts (log) Industry 1 return
Housing permits (log) Industry 2 return
Real consumer spending (∆ log) Industry 3 return
Real manuf. and trade sales (∆ log) Industry 4 return
ISM: new orders index Industry 5 return
Orders for durable goods (∆ log)
Avg. hourly earnings, goods-producing (∆2 log)
PPI, finished goods (∆2 log)
PPI, commodities (∆2 log)
PCE price index (∆2 log)
Federal funds rate (∆)

Table A-5 This table shows the data on which the model of Carriero et al. (2017) is estimated (1959M1-
2014M12).

C.2.2 Data

Carriero et al. (2017) has a complete discussion of the data used to estimate the model. We

briefly discuss several key aspects of the data, but for further details, we refer the reader

to that paper. Table A-5 lists all of the data on which the model is estimated, as well as

the division between macro and financial variables. The data is monthly and its range is

1959M9− 2014M7.

C.2.3 Posterior results for level variables

Figures A-32 and A-33 show the 70% prior robust credible sets for the responses of industrial

production, the federal funds rate, the PCE price index, and the BAA - 10 year Treasury

spreads to a financial and macro uncertainty shock. The only difference relative to the

main text is that we have included the response of the PCE price index to both uncertainty
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Figure A-32 Financial uncertainty shock on level variables (prior robust)
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This figure shows the pointwise 70% credible set prior robust impulse response functions on the level variables
to a 1 standard deviation financial uncertainty shock for the Carriero et al. (2017) model. The dark red lines
are the posterior mean bounds. We only keep the impulse response functions that satisfy Assumptions A2

uf

and A2
um. The reduced-form parameters are drawn from their posterior distributions.

shocks. As one can see, the prior robust credible sets of the PCE price index responses to

both uncertainty shocks are wide.

C.2.4 Posterior results for volatility factors

In this section, we turn to the movements in volatilities following the financial and macro

uncertainty shocks. Figure A-34 shows the volatility effects of a financial uncertainty shock.

Although the set is wide, at the 70% level, the prior robust set puts most of its mass

on a persistent increase in financial volatility. Interestingly, there is some evidence that a
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Figure A-33 Macro uncertainty shock on level variables (prior robust)
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This figure shows the pointwise 70% credible set prior robust impulse response functions on the level variables
to a 1 standard deviation macro uncertainty shock for the Carriero et al. (2017) model. The dark red lines
are the posterior mean bounds. We only keep the impulse response functions that satisfy Assumptions A2

uf

and A2
um. The reduced-form parameters are drawn from their posterior distributions.

financial uncertainty shock shifts the prior robust set over macro volatility upwards. On the

other hand, there is little evidence that a macro uncertainty shock restricts the financial

volatility robust set in either direction. In fact, comparing the 70% sets on the responses of

macro volatility to financial and macro uncertainty shocks, we see that on impact, a higher

response of macro volatility to a financial uncertainty shock versus a macro uncertainty

shock is consistent with the data and identification scheme. Moreover, moving forward, the

financial uncertainty shock credible sets puts more weight on an increase in macro volatility

than the macro uncertainty shock does.
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Figure A-34 Financial uncertainty shock on volatility factors (prior robust)
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This figure shows the pointwise 70% credible set prior robust impulse response functions on the volatility
factors to a 1 standard deviation financial uncertainty shock for the Carriero et al. (2017) model. The
dark blue lines are the posterior mean bounds. We only keep the impulse response functions that satisfy
Assumptions A2

uf and A2
um. The reduced-form parameters are drawn from their posterior distributions.

Figure A-35 Macro uncertainty shock on volatility factors (prior robust)
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This figure shows the pointwise 70% credible set prior robust impulse response functions on the level variables
to a 1 standard deviation macro uncertainty shock for the Carriero et al. (2017) model. The dark blue lines
are the posterior mean bounds. We only keep the impulse response functions taht satisfy Assumptions A2

uf

and A2
um. The reduced-form parameters are drawn from their posterior distributions.

C.2.5 Identified sets at the posterior mean parameters

This subsection analyzes the amount of shrinkage of the identified sets over impulse response

functions at the posterior mean reduced-form parameters following macro and financial un-

certainty shocks. Figures A-36 and A-37 show that for the level impulse response functions,
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both sets of sign restrictions impose a fair amount of shrinkage of the identified sets relative

to the unrestricted set of impulse response functions. This shows that the sign restrictions

we impose do have identifying power in practice.

Comparing the two identified sets, we see that the financial uncertainty shock has iden-

tified sets over industrial production and the federal funds rate that are more negative than

those of the macro uncertainty shock. For both variables, the financial uncertainty shock

identified sets contain the lower bound of possible impulse response functions. On the other

hand, for the macro uncertainty shock, the identified sets are wide and cover 0% for both

variables. There is evidence, however, that large increases in both variables following a macro

uncertainty shock are ruled out. For the BAA - 10 year Treasury spreads, the identified set

of the financial uncertainty shock impulse response function is tight at the upper bound

of possible impulse response functions, whereas the identified set of the macro uncertainty

shock is more symmetric around 0%. Across the 4 variables, it appears that the identified

sets for the financial uncertainty shock is tighter than those for the macro uncertainty shock.

Figures A-38 and A-39 show the corresponding identified sets for the volatility factors.

For the financial uncertainty shock identified set, we see that the identified sets for both

the macro and financial volatility factors do not contain 0 for the entire horizon. On the

other hand, for the macro uncertainty shock identified set, we see that the financial volatility

factor is essentially unrestricted.

C.2.6 Extension of volatility sign restriction to 2 months

It is of interest to extend the volatility sign restrictions for both uncertainty shocks to 2

months (a modification of A2
uf,1 and A2

um,1 to h = 0, 1, 2), while maintaining the restrictions

on the relative signs of the BAA spread impact response (A2
ufm,2). This tighter sign restric-

tion leads to more significant responses in industrial production and the federal funds rate

to a financial uncertainty shock (Figure A-40).
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Figure A-36 Financial uncertainty shock on level variables (identified set at the
posterior mean)
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This figure shows the identified sets (dark red) of impulse response functions on the level variables to a
1 standard deviation financial uncertainty shock for the Carriero et al. (2017) model. The reduced-form
parameters are fixed at their posterior means. For comparison purposes, the light red is the unrestricted set
of impulse response functions.

Figure A-41 shows the responses of the two volatility factors to a financial uncertainty

shock. The tighter sign restriction on financial volatility moves the lower bound of the 70%

credible set to not include 0 for around a year and half. The responses of macro volatility

to a financial volatility shock are similar.

The responses to a macro uncertainty shock (not shown) continue to be similar.
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Figure A-37 Financial uncertainty shock on level variables (identified set at the
posterior mean)
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This figure shows the identified sets (dark red) of impulse response functions on the level variables to a
1 standard deviation macro uncertainty shock for the Carriero et al. (2017) model. The reduced-form
parameters are fixed at their posterior means. For comparison purposes, the light red is the unrestricted set
of impulse response functions.

C.2.7 Results from Haar prior

We present some additional results from assuming a Haar prior for the rotation matrices.

For these results, we go back to our original sign restrictions assumptions (Assumptions A2
uf

and A2
um), but instead of identifying the shocks in a prior robust fashion, we apply the Haar

prior. The inclusion of a prior on the set of rotation matrices allows us to say more about

the responses to financial and macro uncertainty shocks.
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Figure A-38 Financial uncertainty shock on volatility factors (identified set at
posterior mean)
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This figure shows the identified sets (dark blue) of impulse response functions on the volatility factors to
a 1 standard deviation financial uncertainty shock for the Carriero et al. (2017) model. The reduced-form
parameters are fixed at their posterior means. For comparison purposes, the light blue is the unrestricted
set of impulse response functions.

Figure A-39 Macro uncertainty shock on volatility factors (identified set at poste-
rior mean)
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This figure shows the identified sets (dark blue) of impulse response functions on the volatility factors to
a 1 standard deviation macro uncertainty shock for the Carriero et al. (2017) model. The reduced-form
parameters are fixed at their posterior means. For comparison purposes, the light blue is the unrestricted
set of impulse response functions.

Prior implications for the impulse response functions We begin by looking at the

prior implications for the impulse response functions implied by the Haar prior. Table A-6

shows that although the Haar prior restrictions do tighten up the responses of the variables
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Figure A-40 Posterior results:
Financial uncertainty shock on level variables (prior robust)
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This figure shows the pointwise 70% credible set prior robust impulse response functions on the level variables
to a 1 standard deviation financial uncertainty shock for the Carriero et al. (2017) model assuming that the
volatility sign restrictions hold for 2 months (modification of Assumptions A2

uf,1 and A2
um,1). The dark

red lines are the posterior mean bounds. The reduced-form parameters are drawn from their posterior
distributions.

to the two uncertainty shocks, the credible sets remain wide.

Posterior results Figures A-42 and A-43 show the 70% posterior credible sets of the level

variable responses to a financial uncertainty and macro uncertainty shock.

One sees that many of the conclusions found in the main text continue to hold. In

response to a financial uncertainty shock, industrial production immediately declines. The

response appears permanent, settling at a posterior median value of around −0.6%. On the

other hand, a macro uncertainty shock produces little evidence of a movement in industrial



A-76

Figure A-41 Posterior results:
Financial uncertainty shock on volatility factors (prior robust)
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This figure shows the pointwise 70% credible set prior robust impulse response functions on the volatility
factors to a 1 standard deviation financial uncertainty shock for the Carriero et al. (2017) model assuming
that the volatility sign restrictions hold for 2 months (modification of Assumptions A2

uf,1 and A2
um,1). The

dark blue lines are the posterior mean bounds. The reduced-form parameters are drawn from their posterior
distributions.

production, although the posterior median decline is negative. There is little evidence of a

movement in the PCE following a financial uncertainty shock, whereas there is some mild

evidence of an increase in the price level on impact from a macro uncertainty shock. These

credible sets, however, are quite wide. On balance, there is some evidence of a macro

uncertainty shock being more inflationary than a financial uncertainty shock. A financial

uncertainty shock produces a pronounced decline in the federal funds rate that reaches

around −0.2% nearly 2 years after the shock. On the other hand, a macro uncertainty shock

produces little movement. By assumption, a financial uncertainty shock must lead to a larger

initial increase in spreads relative to a macro uncertainty shock. We see that this assumption

leads to a financial uncertainty shock having a hump-shaped and long-lasting response in

BAA-10 year Treasury spreads, with a peak at the posterior median of around 0.06%. A

macro uncertainty shock produces little response.

Figure A-44 shows the volatility factor responses to financial and macro uncertainty

shocks. We find that a financial uncertainty shock leads to persistent increases in both

financial and macro volatility. The heightened volatility lasts for around 2 years after the
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Table A-6 Prior results:
Impact effects of financial and macro uncertainty shocks (Haar)

Fin unc Macro unc
15% 85% 15% 85%

IP (%) −66.4 65.9 −66.4 65.9
PCE (%) −15.8 16.2 −15.8 16.2
Federal funds rate (%) −47.5 47.0 −47.5 47.0
Spread, Baa-10y Treasury (%) −4.7 23.7 −23.5 4.7
Macro volatility −0.08 0.08 0.02 0.10
Financial volatility 0.02 0.10 −0.08 0.08

This table shows the 70% credible sets on impact to a 1 standard deviation financial uncertainty and macro
uncertainty shock in the Carriero et al. (2017) model. The reduced-form paramters are drawn from the prior
distributions of the model. We assume a Haar prior over the rotation matrices. We only keep the impulse
response functions that satisfy Assumptions A2

uf and A2
um.

uncertainty shock. The macro volatility shock, on the other hand, only increases the macro

volatility factor. Moreover, the macro volatility factor increase is not persistent, lasting for

around half a year.

Results from an alternative sign restriction on the S&P500 To separate out finan-

cial and macro uncertainty shocks, we impose an alternative sign restriction on the S&P500

instead of on the BAA spreads. We therefore replace assumption A2
ufm with assumption

A2
u′fm:

A2
u′fm : IRF [SP500t+h|v∗t = e1;Rt] < IRF [SP500t+h|v∗t = e2;Rt]

for h = 0.

This assumption says that a financial uncertainty shock must decrease S&P500 stock re-

turns by more than a macro uncertainty shock on impact. The motivation for this restriction

also comes from the structural model. Insofar as a financial uncertainty shock produces a

decline in investment that decreases the price of capital by more than a macro uncertainty

shock does, one should expect that a financial uncertainty shock leads to a larger decline

in returns to capital, which would lead to a larger decline in stock prices. We maintain an
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Figure A-42 Posterior results:
Financial uncertainty shock on level variables (Haar)
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This figure shows the pointwise 70% credible set impulse response functions on the level variables to a
1 standard deviation financial uncertainty shock for the Carriero et al. (2017) model. The reduced-form
parameters are drawn from their posterior distributions. We assume a Haar prior over the rotation matrices.
We only keep the impulse response functions that satisfy Assumptions A2

uf and A2
um. The dark red line is

the impulse response function drawn from a single Q∗ that is closest to the pointwise median in a sum of
squares sense (median target method of Fry and Pagan (2007)).

assumption of the Haar prior over the rotation matrices.

Figure A-46 shows the posterior results.11 They are largely qualitatively consistent with

those produced by the main set of sign restrictions considered in the paper, although the

separation between the two types of uncertainty shocks is a bit weaker. This may be ex-

pected given the high short-term volatility of stock price movements. There is some mild

11The prior implications for the impulse response functions are similar to those from the Haar prior with
the BAA spread identification, except with the bias in the signs on the S&P500 response instead of the
spread response.
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Figure A-43 Posterior results:
Macro uncertainty shock on level variables (Haar)
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This figure shows the pointwise 70% credible set impulse response functions on the level variables to a
1 standard deviation macro uncertainty shock for the Carriero et al. (2017) model. The reduced-form
parameters are drawn from their posterior distributions. We assume a Haar prior over the rotation matrices.
We only keep the impulse response functions that satisfy Assumptions A2

uf and A2
um. The dark red line is

the impulse response function drawn from a single Q∗ that is closest to the pointwise median in a sum of
squares sense (median target method of Fry and Pagan (2007)).

evidence of a decline in industrial production following a financial uncertainty shock, espe-

cially in the longer run. The 70% credible sets of the response from industrial production

following a macro uncertainty shock covers 0% after some marginal evidence of a decline

in the immediate months. Like with the spread identification, there is more evidence of an

increase in the price level from a macro uncertainty shock and more evidence of a decline in

the federal funds rate from a financial uncertainty shock. BAA-10 year Treasury spreads in-

crease strongly in response to a financial uncertainty shock, but barely move at all following
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Figure A-44 Posterior results:
Financial uncertainty shock on volatility factors (Haar)
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This figure shows the pointwise 70% credible set impulse response functions on the volatility factors to a
1 standard deviation financial uncertainty shock for the Carriero et al. (2017) model. The reduced-form
parameters are drawn from their posterior distributions. We assume a Haar prior over the rotation matrices.
We only keep the impulse response functions that satisfy Assumptions A2

uf and A2
um. The dark blue line is

the impulse response function drawn from a single Q∗ that is closest to the pointwise median in a sum of
squares sense (median target method of Fry and Pagan (2007)).

Figure A-45 Posterior results:
Macro uncertainty shock on volatility factors (Haar)
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This figure shows the pointwise 70% credible set impulse response functions on the volatility factors to
a 1 standard deviation macro uncertainty shock for the Carriero et al. (2017) model. The reduced-form
parameters are drawn from their posterior distributions. We assume a Haar prior over the rotation matrices.
We only keep the impulse response functions that satisfy Assumptions A2

uf and A2
um. The dark blue line is

the impulse response function drawn from a single Q∗ that is closest to the pointwise median in a sum of
squares sense (median target method of Fry and Pagan (2007)).

a macro uncertainty shock.

Finally, figure A-48 shows the volatility responses to the two uncertainty shocks. With this
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Figure A-46 Posterior results:
Financial uncertainty shock on level variables (Haar/S&P500 identification)
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This figure shows the pointwise 70% credible set impulse response functions on the level variables to a
1 standard deviation financial uncertainty shock for the Carriero et al. (2017) model. The reduced-form
parameters are drawn from their posterior distributions. We assume a Haar prior over the rotation matrices.
We only keep impulse response functions that satisfy Assumptions A2

u′f and A2
u′m. The dark red line is the

impulse response function drawn from a single Q∗ that is closest to the pointwise median in a sum of squares
sense (median target method of Fry and Pagan (2007)).

alternative identification, a financial uncertainty shock no longer leads to increases in both

macro and financial volatility factors. The persistence of the increase in financial volatility

after the financial uncertainty shock is still higher than the persistence of the increase of

macro volatility to a macro uncertainty shock.
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Figure A-47 Posterior results:
Macro uncertainty shock on level variables (Haar/S&P500 identification)
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This figure shows the pointwise 70% credible set impulse response functions on the level variables to a 1
standard deviation macro uncertainty shock for the Carriero et al. (2017) model.The reduced-form parameters
are drawn from their posterior distributions. We assume a Haar prior over the rotation matrices. We only
keep impulse response functions that satisfy Assumptions A2

u′f and A2
u′m. The dark red line is the impulse

response function drawn from a single Q∗ that is closest to the pointwise median in a sum of squares sense
(median target method of Fry and Pagan (2007)).
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Figure A-48 Posterior results:
Financial uncertainty shock on volatility factors (Haar/S&P500 identification)
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This figure shows the pointwise 70% credible set impulse response functions on the volatility factors for the
Carriero et al. (2017) model. We assume a Haar prior over the rotation matrices using the sign restriction
on the S&P500. The dark blue line is the impulse response function drawn from a single Q∗ that is closest
to the pointwise median in a sum of squares sense (median target method of Fry and Pagan (2007)).

Figure A-49 Posterior results:
Macro uncertainty shock on volatility factors (Haar/S&P500 identification)
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This figure shows the pointwise 70% credible set impulse response functions on the volatility factors for the
Carriero et al. (2017) model. We assume a Haar prior over the rotation matrices using the sign restriction
on the S&P500. The dark blue line is the impulse response function drawn from a single Q∗ that is closest
to the pointwise median in a sum of squares sense (median target method of Fry and Pagan (2007)).



A-84

D Supporting results

In this section, we present some additional results that supplement our main fin. First,

we discuss an analysis of the relationship between periods of high financial uncertainty and

the macroeconomy. We aim to show that financial uncertainty indeed is correlated with

downturns in the macroeconomy. Second, we discuss empirical exercises using international

data (Germany, France, Italy, and Spain) that support our spread identification restriction.

D.1 The relationship between financial uncertainty and the macroe-

conomy

We provide evidence on how the economy behaves around periods of high financial uncer-

tainty.

To identify these periods, we turn to two different indices that purport to measure financial

uncertainty. The first is the posterior mean of the financial volatility factor of Carriero et al.

(2017). This index measures financial uncertainty as the common movements in volatilities

across a broad range of financial variables. It runs from 1960M9−2014M7. The second is the

US equity uncertainty index of Baker et al. (2013).12 This index searches all US newspapers

in the NewsBank service. The index is constructed as the fraction of newspaper articles

including the words ”uncertainty” or ”uncertain,” the terms ”economic” or ”economy,” and

one or more of the following terms: ”equity market”, ”equity price”, ”stock market”, or

”stock price.” The index is constructed at a daily frequency, so we take an intermonth

average to form a monthly index. It runs from 1985M1− 2017M12.

12The index can be found on www.policyuncertainty.com

www.policyuncertainty.com
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D.1.1 Results

We identify time periods of either high broad-based financial uncertainty, as measured by

the Carriero et al. (2017) or Baker et al. (2013) indices. We are only interested in time

periods of extreme financial uncertainty, so we consider time periods of the index that are

greater than 2 standard deviations above the mean of each index, respectively.

Carriero et al. (2017) index We identify 9 dates of high financial volatility according

to the index. These dates correspond to the peaks of the financial uncertainty index during

periods of heightened financial volatility.

Baker et al. (2013) equity uncertainty index We identify 7 dates with the Baker et al.

(2013) index. We find evidence of a strong linear time trend, which we remove before working

with the index. The dates we use when identifying peaks of heightened equity uncertainty

correspond to the highest points of the index.13

Response of macroeconomy Now we look at how the macroeconomy responds following

the peaks of high financial uncertainty. We combine the two sets of events identified by our

two financial uncertainty indices. In effect, this adds three events to those already identified

from the Carriero et al. (2017) index: October 1987 (Black Monday), November 2000 (Dot

Com Bubble), and August 2011 (Black Monday). For the events that both uncertainty

indices pick up, we use as the peak date the timing from the Carriero et al. (2017).14

We focus on industrial production growth, PCE inflation, the federal funds rate, and the

BAA-10 year Treasury bond spread. We take an event study type approach and look at

the 5 months before and after the financial uncertainty peak in question. For IP growth

and PCE inflation, we plot the data, whereas for the federal funds rate and the spreads, we

13The index has a large value in Jan 1985, which is the first period of the data. We exclude this observation
when detecting uncertainty events because we do not know the date of the peak.

14The results are robust to using the Baker et al. (2013) index timing as well.
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Figure A-50 Financial uncertainty indices and identified periods of high financial
uncertainties

Carriero et al. (2017) financial volatility factor

1960 1970 1980 1990 2000 2010
0.5

1

1.5

2

2.5

3

Baker et al. (2013) equity uncertainty index

1985 1995 2005 2015

0

200

400

600

This figure shows the Carriero et al. (2017) financial volatility factor (top panel) and the Baker et al. (2013)
equity uncertainty index (bottom panel). The blue lines are the indices themselves whereas the dotted red
lines are the identified peaks of the financial uncertainty events that lead the indices to jump more than 2
standard deviations above its historical mean. Note that the Baker et al. (2013) index is first regressed on
a constant and linear time trend.
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Figure A-51 Behavior of macroeconomy around periods of high financial uncer-
tainty
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This figure shows the behavior of the macroeconomy around periods of high financial uncertainty. The red
dotted line shows the time period of the peak of financial uncertainty, as measured by the Carriero et al.
(2017) and Baker et al. (2013) indices. We look at a period of 5 months before and after the peak of the
indices. For IP growth and PCE inflation, we plot the data, whereas for the federal funds rate and the
spreads, we normalize the time period −5 to be equal to 0%.

normalize the time period −5 to be equal to 0%. We look at the median responses across

these 12 identified episodes of high financial uncertainty.

Figure A-51 shows the results from the exercise. We find evidence that IP growth declines

the period of the financial uncertainty peak. This decline is persistent, with below average

growth for 4 months after the peak of financial uncertainty (average IP growth in our sample

is 0.24%) and a trough of −0.42% 1 month after the period of high financial uncertainty.

There is also some evidence of a persistent decline in PCE inflation after the financial un-

certainty event, with a trough of below 0.2% 2 months after the financial uncertainty event.
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The federal funds rate begins to decline as well, with a long run decline of around 60 basis

points 5 months after the peak.

Importantly for our results, there is strong evidence of a sharp increase in spreads the

month of the financial uncertainty peak. The median response is for spreads to rise by 42

basis points the month of the financial uncertainty peak. Spreads are persistently high for the

5 months after the financial uncertainty event. An additional point to note is that spreads

begin rising in the months before the financial uncertainty peak. However, the largest spike

in spreads occurs in the period of the financial uncertainty peak. This may be due to the

fact that we are taking as the event date the peak of the financial uncertainty index. Indeed,

financial uncertainty begins increasing in the months before the peak is reached.15

We would like to mention a caveat to these results. We believe that they provide evidence

that suggests heightened financial volatility or uncertainty are associated with declines in IP

growth, inflation, the federal funds rate, and a rise in spreads. This puts the explanation of a

financial uncertainty shock as a potentially important factor in macroeconomic fluctuations

on the table, but it by no means rules out other potential explanation. A proper identification

scheme would be necessary to disentangle the various structural sources, which is the focus

of our paper.

D.2 Assessing the spread identification assumption

A common theme across these two examples is the identifying power of spread behavior in

separating the two uncertainty shocks. Specifically, in both examples, a key assumption is

that a one standard deviation positive financial uncertainty shock leads to a larger increase in

spreads than a one standard deviation macro uncertainty shock. We provide some evidence

supporting this identification assumption.

15Importantly, the Carriero et al. (2017) model we use for our second example also controls for any possible
effects of time t − 1 level shocks on time t volatility, so the effects of any changes in spreads in the periods
before a financial uncertainty shock would be properly accounted for.
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D.2.1 Structural model simulations

First, we take a model-based approach. Motivated by the work of Basu and Bundick (2015)

and Gertler and Karadi (2011), we consider a New Keynesian model with financial frictions.

We look at two structural volatility shocks: a capital quality volatility shock (financial

uncertainty) and a total factor productivity (TFP) volatility shock (macro uncertainty) and

find support for our identification assumption that a financial uncertainty shock leads to a

larger increase in spreads relative to a macro uncertainty shock.

The intuition for this result is straightforward. An increase in TFP volatility encourages

agents to decrease consumption, supply more labor, and increase investment. The reason is

with increased future uncertainty about TFP, working more and investing in a higher capital

stock helps agents smooth out consumption.16 On the other hand, a capital quality volatility

shock increases the riskiness of holding capital, thereby discouraging investment relative to

the TFP volatility shock. In these models, investment demand is a key determinant of spread

behavior, as stronger investment demand increases the price of capital, thereby improving

the intermediary’s net worth position and decreasing spreads.

This fundamental difference in the nature of risk means that it indeed is quite difficult

to find a parameterization where a TFP volatility shock leads to a higher movement in

spreads relative to a capital quality volatility shock. We show the robustness of this result to

changes in the persistence and standard deviations of the two volatility shocks, the amount

of nominal price rigidities in the model, and the household’s risk aversion.17

Details on the structural model To motivate our sign restriction assumptions on the

spread, we consider the implications of a financial uncertainty shock (capital quality volatil-

ity) and a macro uncertainty shock (TFP volatility) for spread behavior in a dynamic equi-

16This is the heart of the comovement problem between consumption and investment that plagues TFP
volatility shocks in real business cycle models.

17As in Basu and Bundick (2015), nominal rigidities do restore the comovement between consumption
and investment.
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librium model with financial frictions. Specifically, we are interested in deriving some ro-

bust predictions on the relative movements in spreads following the two structural volatility

shocks. We start with a baseline parametrization of the model as shown in table A-7. We

then vary the relative persistence and standard deviations of the two structural shocks, the

level of nominal price rigidities, and the risk aversion of the households. The results are

clear: for all parameterizations, the capital quality volatility shock produces a larger pos-

itive movement in spreads when compared to the TFP volatility shock. Moreover, for all

parameterizations, the capital quality volatility shock leads to an increase in the spreads.

The dynamic equilibrium model emphasizes the mechanism highlighted in Gertler and

Karadi (2011). The setup is quite similar to the baseline Gertler and Karadi (2011) model,

but with three main differences: agents have Epstein-Zin utility, the government does not

follow any credit policy, and price setters face Rotemberg (1982) as opposed to Calvo ad-

justment costs. Please refer to Gertler and Karadi (2011) for a discussion of model details.18

This exposition will be a general sketch of the model.

There are two types of households: workers and bankers (financial intermediaries). House-

holds have Epstein-Zin utility over consumption and leisure. Workers maximize consumption

(Ct), labor (Lt), one period real deposit holdings (Bt), and one period nominal deposit hold-

ings (Bn
T ). Pt is the price level, Wt is the real wage rate, Rt is the real return on one period

risk free deposits, irt is the nominal risk free rate on one period deposits, Πt are profits from

firms, and Tt are transfers.

Ut = max
Ct,Lt,Bt

[(
Cη
t (1− Lt)1−η) 1−σ

θU + β
(
EtU

1−σ
t+1

) 1
θU

] θU
1−σ

(A.36)

subject to

Ct = WtLt + Πt + Tt +RtBt −Bt+1 + irt−1
Bn
t

Pt
−
Bn
t+1

Pt

Financial intermediaries obtain deposits from households and use the funds raised as well

18The appendix of Foerster (2015) also contains a useful discussion of the derivations.
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as their own net worth to lend to non-financial firms. An intermediary j has the following

balance sheet constraint, where Qt is the price of a claim on non-finanical firms, Sj,t is the

quantity of claims, Nj,t is the net worth, and Bj,t+1 is the amount of deposits:

QtSj,t = Nj,t +Bj,t+1 (A.37)

Intermediary net worth has the following law of motion, where Rk,t+1 is the realized return

to capital in period t+ 1:

Nj,t+1 = Rk,t+1QtSj,t −Rt+1Bj,t+1 = (Rk,t+1 −Rt+1)QtSj,t +Rt+1Nj,t (A.38)

Intermediary j’s objective function is to maximize expected terminal wealth adjusted by the

household stochastic discount factor (βiΛt,t+i)

Vj,t = maxEt

(
∞∑
τ=1

(1− θ)θτβτΛt,t+τ [(Rk,t+τ −Rt+τ )Qt+τ−1Sj,t+τ−1 +Rt+τNj,t+τ−1]

)
(A.39)

A banker has the following incentive compatibility constraint, motivated by a desire to divert

assets, only 1− λ of which can be recovered by the households

Vj,t ≥ λQtSj,t (A.40)

Now we discuss the non-financial side of the macroeconomy. Intermediate goods firms are

competitive and produce the goods that are sold to retail firms. They issue St claims to

capital Kt+1. The following arbitrage relation holds between the value of claims and the

value of capital:

QtKt+1 = QtSt (A.41)

The production function of the intermediate goods firms is Cobb-Douglas and perturbed by
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a permanent TFP shock (At) and capital quality shock (ζt):

Yt = (UtζtKt)
α (AtLt)

1−α (A.42)

where Ut is capacity utilization.

Before selling previously purchased capital back on the competitive market, intermediate

goods firms also pay a unit cost per unit to repair depreciated capital. Therefore, the realized

return to capital Kt+1 is

Rk,t+1 =

[
Pm,t+1α

Yt+1

ζt+1Kt+1
+Qt+1 − δ(Ut+1)

]
ζt+1

Qt

(A.43)

where Pm,t+1 is the price of intermediate goods. In addition to purchasing capital, interme-

diate goods firms also decide on a capital utilization rate and labor supply.

Competitive capital producing firms purchase capital from intermediate goods firms. They

repair depreciated capital, build new capital, and sell it on the competitive market. In line

with Gertler and Karadi (2011), we assume that adjustment costs are on investment net

of depreciated capital. Therefore, capital producing firms only pay a unit cost to repair

depreciated capital. Their profits are as follows:

proft = δ(Ut)ζtKt−QtζtKt+QtKt+1−(Kt+1−(1−δ(Ut))ζtKt)−S
(

In,t + IssAt
In,t−1 + IssAt−1

)
(In,t + IssAt)

(A.44)

We define net investment as

In,t = It − δ(Ut)ζtKt (A.45)

Rewriting the profits of capital producing firms in terms of net investment, the maximization

problem is as follows:

max
In,t

Et

(
∞∑
τ=0

βτΛt,t+τ

[
(Qτ − 1) In,τ − S

(
In,τ + IssAτ

In,τ−1 + IssAτ−1

)
(In,τ + IssAτ )

])
(A.46)
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The function S is quadratic with respect to changes in net investment. Iss is the trend-

adjusted steady state level of investment. Capital good producers choose net investment

levels In,τ to maximize the expected future discounted value of firm profits.

Retail firms are monopolistically competitive. They buy inputs from intermediate goods

firms. The final output is a CES aggregate of each retail firm f product:

Yt =

[∫ 1

0

Y
ε−1
ε

ft df

] ε
ε−1

(A.47)

Retail firms face quadratic price adjustment costs and have the objective function

maxEt

∞∑
τ=0

βτΛt,t+τ

((
pf,t+τ
pt+τ

− Pm,t+τ
)(

pf,t+τ
pt+τ

)−ε
yt+τ −

φp
2

(
pf,t+τ

Πpf,t+τ−1

− 1

)2

yt+τ

)
(A.48)

Monetary policy follows a standard Taylor rule with interest rate smoothing that reacts to

inflation and output growth deviations from steady state.

irt
ir

=

(
irt−1

ir

)ρR ((Πt

Π

)ρπ (∆ log Yt
ΛA

)ρY)1−ρR
(A.49)

The Euler equation for nominal bonds holds:

βEt

(
Λt,t+1

irt
Πt+1

)
= 1 (A.50)

The government fiscal policy is Ricardian. Goods market clearing implies, where G is a

fixed, exogenous level of government spending:

Yt = Ct + It +
φp
2

(
Πt

Π
− 1

)2

Yt + S

(
In,t + IssAt

In,t−1 + IssAt−1

)
(In,t + IssAt) +G (A.51)

The capital accumulation equation is:

Kt+1 = (1− δ(Ut))ζtKt + It (A.52)
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Table A-7 Baseline parameter values of the dynamic equilibrium model

Parameter Value Parameter Value Parameter Value
α 0.33 ρA 0.2 S ′′ 3
β 0.994 σA 0.007 φp 160

ΛA 0.004 ρζ 0.66 ρR 0.75
Π 0.0092 σζ 0.01 ρπ 1.5
ε 6 ρh,A 0.5 ρy 0.5
δ 0.025 σh,A 0.5 θ 0.972
η 0.32 ρh,ζ 0.5 λ 0.381
σ 10 σh,ζ 0.5
ψ 36 G 0.19Yss
γ2 0.01 Rk,ss −Rss 0.01/4

Depreciation δ(Ut) is a function of the amount of utilization

δ(Ut) = δ + γ1 (Ut − 1) + γ2 (Ut − 1)2 (A.53)

The two exogenous shocks and their stochastic volatilities follow autoregressive processes:

∆ logAt = ρA∆ logAt−1 + εA,t, εA,t ∼ N(0, h2
A)

log hA,t = (1− ρh,A) log σA + ρh,A log hA,t−1 + εhA,t, εhA,t ∼ N(0, σ2
h,A)

log ζt = ρζ log ζt−1 + εζ,t, εζ,t ∼ N(0, h2
ζ)

log hζ,t = (1− ρh,ζ) log σζ + ρh,ζ log hζ,t−1 + εζ,t, εζ,t ∼ N(0, σ2
h,ζ)

(A.54)

We are interested in the model’s implications for bond spreads, which in the model is

defined as Et [Rk,t+1]−Rt.

To justify our sign restrictions, we are specifically interested in whether a capital quality

volatility shock leads to a larger movement in bond spreads relative to a TFP volatility

shock. Also, we are interested in whether a capital quality volatility shock leads to a positive

movement in spreads.

For our baseline calibration, we take many of the parameter values from Gertler and

Karadi (2011) and Basu and Bundick (2015). We choose a value of 0.5 for the persistence
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of both volatility shocks. The parameter values are also well within the range of those often

used in the literature. As this is a quarterly model, such a persistence implies that volatility

is 25% that of its height after half a year, which is broadly consistent with our empirical

results. We take a third order perturbation of the model with pruning (Kim et al., 2008;

Andreasen et al., 2018).

We would like our result to be robust. Therefore, we vary several key parameters of interest

around our baseline calibration. First, we vary the persistence and standard deviations of

the volatility shocks. Specifically, we vary ρh,i on a grid of [0.1 0.5 0.99] for i = A, ζ. We

vary σh,i on a grid of [0.1 0.5 1]. Note that we consider all possible parameter combinations

for ρh,A, ρh,ζ , σh,A, σh,ζ , for a total of 81 possible parameters. This means that we allow

for parameterizations with a persistent and large TFP volatility shock combined with a

transitory and small capital quality volatility shock. For all parameterizations that we

consider, a capital quality volatility shock leads to a larger movement in spreads relative to

a TFP volatility shock. A capital quality volatility shock also always leads to an increase in

the spreads.

Next, we vary the level of price rigidities. Basu and Bundick (2015) show that a high

enough price rigidity can restore comovement between consumption and investment following

volatility shocks, so it is of interest for us to vary this parameter. Fixing other parameters

at the baseline calibration, we consider a variety of φp on a grid of [0 160 250 500 750 1000].

Nominal price rigidities do indeed lead to declines in consumption and investment to TFP

volatility shocks. For no parameterization considered, however, does a TFP volatility shock

lead to a larger increase in spreads relative to a capital quality volatility shock. Furthermore,

a capital quality volatility shock continues to always increase the spreads.

Finally, we test robustness to the level of risk aversion in the household utility function.

We set household risk aversion to 10, which is well within the range of reasonable parameter

values. For robustness, we lower risk aversion to values on the grid [1.01 3 5 7 10]. Our

results continue to stay the same.
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We conclude from this exercise that our baseline sign restrictions that a financial uncer-

tainty shock leads to a larger increase in spreads than a macro uncertainty shock appears

quite robust in a theoretical model. We also find robust evidence that a financial volatility

shock leads to an increase in spreads.

In closing this discussion, we would like to discuss a caveat with regards to the relationship

between our empirical model and a structural model. It is hard to find a case where our

model exactly maps into a fully structural model. Insofar as our econometric model is flexible

and the economic restrictions we impose are limited, however, we believe our toolkit can aid

in the discovery of important comovements in the data that more structural models with

uncertainty shocks should be able to match. Moreover, by focusing on the identification

problem in the volatility equation, we can also apply our methodology to models that do

not neatly fit into the structural VAR framework, such as factor volatility models.

D.2.2 Evidence from European data

In addition to the model based evidence, we also provide empirical evidence to support our

identification strategy. We turn to international data from Germany, France, Italy, and

Spain to investigate the relationships between financial and macro uncertainty on corporate

bond spreads. We conduct two exercises. First, we estimate bivariate versions of our CAIW

model on quarterly EBP and labor productivity data. We use this model to analyze the

relationships between productivity volatility, EBP volatility, and the EBP level. Our second

exercise identifies financial and macro uncertainty shocks using volatility proxies and a proxy

VAR approach.

Productivity volatility, EBP volatility, and the EBP level Our first exercise inves-

tigates the relationships between the EBP level and the volatilities of productivity and EBP.

We take quarterly EBP and labor productivity data from 1999Q1 − 2013Q3 for Germany,
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France, Italy, and Spain. We use labor productivity data as it is the closest quarterly proxy

for total factor productivity that we could find.19

We estimate bivariate versions of our volatility-in-mean model assuming the CAIW volatil-

ity process. Our model specifies 4 lags in the VAR, a contemporaneous volatility-in-mean

effect, and 1 lag in the volatilities.20 We take 500, 000 draws from the posterior distribution

and use the first 300, 000 as burn-in. We use 500 of these final 200, 000 reduced-form param-

eters (evenly-spaced) and 30 draws of the rotation matrices for each reduced-form parameter

draw. We assume a Haar prior on the rotation matrices.

We begin by identifying a productivity (prod) uncertainty shock.

Assumption A4
p (Productivity uncertainty shock). The uncertainty shock satisfies

Ap:

A4
p,1 : IRF

[
Σprod,t+h

∣∣v∗t = e1;Rt

]
> 0 for h = 0.

A4
p,2 : IRF

[
Σprod,t+h

∣∣v∗t = e1;Rt

]
> IRF

[
Σprod,t+h

∣∣v∗t = ei;Rt

]
for h = 0 and i 6= 1.

This assumption imposes that a productivity uncertainty shock must raise labor produc-

tivity volatility contemporaneously and also lead to the largest increase in labor productivity

volatility among all second moment shocks. It imposes that the bulk of the fluctuations in

labor productivity volatility come from productivity uncertainty shocks.

Figure A-52 shows the responses of the EBP to a productivity uncertainty shock. We

find that across these countries, there is little evidence that a productivity uncertainty shock

moves EBP. Indeed, the credible sets are wide around 0%, and for Spanish data, the posterior

median IRF is negative. We believe that these results support our identification restriction

that does not specify the directional response of the EBP to a macro uncertainty shock.

19Our EBP data comes from Gilchrist and Mojon (2017) and is monthly. We take interquarter averages to
form the quarterly EBP. Our labor productivity is from FRED (Early estimate of quarterly ULC indicators:
total labor productivity).

20Our priors are the same as those used in Example 1 of the main text.



A-98

Figure A-52 Posterior results:
Productivity uncertainty shock on EBP for European countries
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This figure shows the pointwise 70% credible set impulse response functions on the EBP to a 1 standard
deviation productivity uncertainty shock for the bivariate CAIW model. The reduced-form parameters are
drawn from their posterior distributions. We assume a Haar prior over the rotation matrices. We only keep
impulse response functions that satisfy Assumption A4

p. The dark red line is the impulse response function
drawn from a single Q∗ that is closest to the pointwise median in a sum of squares sense (median target
method of Fry and Pagan (2007)).

A valid concern is that we do not have enough data to properly identify the real effects

of any uncertainty shock. We show that this is not the case. We now identify a shock that

maximizes EBP volatility:

Assumption A5
EBPvmax (Uncertainty shock that maximizes EBP volatility). The

uncertainty shock satisfies A5
EBPvmax:

A5
EBPvmax,1 : IRF

[
ΣEBP,t+h

∣∣v∗t = e1;Rt

]
> 0 for h = 0.

A5
EBPvmax,2 : IRF

[
ΣEBP,t+h

∣∣v∗t = e1;Rt

]
> IRF

[
ΣEBP,t+h

∣∣v∗t = ei;Rt

]
for h = 0 and i 6= 1.
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In imposing Assumption A5
EBPvmax, we do not simultaneously impose Assumption A4

p, so

we are not interested in a joint identification exercise.21

Figure A-53 shows the results. We find that this shock indeed does increase the EBP

across the four countries. If one were to interpret this shock as financial uncertainty shock,

then it would be reasonable to conclude that a financial uncertainty shock increases the EBP

by more than the macro uncertainty shock.22

Analysis with empirical proxies of uncertainty In this exercise, we compare the

reduced-form correlations between the excess bond premium and more financially-related

uncertainty proxies versus more macro-based ones. We proxy for financial uncertainty with

stock market volatility and macro uncertainty with the common movements in volatility

estimated from a large cross section of macro data in the spirit of Jurado et al. (2015).23

The stock market volatility data is constructed by splicing together volatility measures from

daily returns and the implied volatility. The macro volatility factor data is constructed by

taking averages of volatility estimates across a large cross section of macroeconomic data.

The precise details are in Meinen and Roehe (2017). The data are monthly from 1999M1

to 2013M10.

We run country-by-country trivariate Bayesian vector autoregressions with 6 lags using

the codes of Giannone et al. (2015). For the variance covariance matrix of the innovations,

we put an inverse Wishart prior with degree of freedom 5 and with the mean as a diagonal

variance covariance matrix with the variances of the innovations from univariate AR(1)

models on the diagonal. Our prior for the VAR parameters is conditional on the variance

21Indeed, if one imposes jointly that Assumptions A4
p and A5

EBPvmax hold, then it is not clear how to
deal with a second moment shock that simultaneously satisfies both assumptions.

22One caveat, of course, that is preventing us from wholeheartedly taking this interpretation is that one
should in theory jointly identify the uncertainty shocks within one VAR system. The purpose of this exercise,
on the other hand, is not necessarily to jointly identify the two uncertainty shocks. It is to provide supporting
evidence to our sign restrictions used in the main text.

23We use data provided by Meinen and Roehe (2017).
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Figure A-53 Posterior results:
Uncertainty shock that maximizes EBP volatility on EBP for European countries
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This figure shows the pointwise 70% credible set impulse response functions on the EBP to a 1 standard
deviation uncertainty shock that maximizes the EBP volatility increase for the bivariate CAIW model. The
reduced-form parameters are drawn from their posterior distributions. We assume a Haar prior over the
rotation matrices. We only keep impulse response functions that satisfy Assumption A4

p. The dark red line
is the impulse response function drawn from a single Q∗ that is closest to the pointwise median in a sum of
squares sense (median target method of Fry and Pagan (2007)).

covariance matrix of the innovations (Σ). Specifically, we put a Minnesota prior on the VAR

parameters with variance covariance matrix:

cov ((Φs)ij, (Φr)hm|Σ) =


λ2 1

s2
Σih
σ̂2
j

if m = j and r = s

0 otherwise

(A.55)

r and s are the lags of the VAR parameters while i is the equation and j is the variable.

This prior allows for correlation between the same variables at the same lags in different
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Figure A-54 Posterior results:
Generalized IRFs of VIX versus macro vol factor for European countries
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This figure shows the pointwise 70% credible set generalized impulse response functions on the EBP to a 1
standard deviation VIX shock (blue) and macro volatility factor shock (red). The dark blue and red lines
are the respective pointwise posterior medians. The parameters are drawn from their posterior distributions.

equations. λ is the prior tightness parameter. We follow Giannone et al. (2015) and put

a hyperprior on this parameter, which is a Gamma distribution with a mean of 0.2 and

standard deviation of 0.4.24

We are interested in characterizing the dynamic relationships between our financial and

macro uncertainty measures. To do so, we use generalized impulse response functions of

Pesaran and Shin (1998), which give the expected movements in EBP from a one standard

deviation innovation to the financial uncertainty and macro uncertainty proxies. Figure A-54

shows the responses of the EBP to shocks to the stock market volatility equation (blue and

24We use the codes provided by Giannone et al. (2015).
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red lines) and macro volatility factor equation (green and magenta lines). Across the four

countries, we see a consistent result that innovations to stock market volatility are associated

with higher movements of the excess bond premium on impact relative to innovations to the

macro volatility factor. While the purpose of this exercise is not to identify financial and

macro uncertainty shocks, we find the relationships between the excess bond premium and

the two different uncertainty proxies across many countries as suggestive evidence in support

of our bond spread sign restriction assumption.
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E Applying our methodology on data simulated from

the Gertler and Karadi (2011) model

We now apply our methodology to data simulated from the Gertler and Karadi (2011) model

discussed in section D.2 of the appendix. In total, there are 4 shocks hitting the system:

TFP and capital quality level shocks, and TFP and capital quality volatility shocks. We

simulate data of length 550 from the model (burn-in of 1000). We then estimate our VAR

model with the inverse Wishart volatility process on output growth and spread data.

There are two challenges with regards to this exercise. First, the DSGE model is solved by

a third order perturbation method. Therefore, the data come from a nonlinear state space

model. As our VAR is linear conditional on the volatility estimate Σt, we are neglecting

some higher-order terms in our empirical model. This is an important caveat to our results

to keep in mind. Second, as was pointed out by Born and Pfeifer (2014), it is quite difficult

for dynamic equilibrium models to generate large fluctuations in response to second moment

shocks without producing unreasonably large responses to first moment shocks. This makes

the identification of the real effects of volatility shocks quite difficult. In a data simulation,

the effects of level shocks generally dominate. In general, we follow our parameterization in

A-7. We make a few parameter changes, with the goal of boosting the importance of the

real effects of volatility shocks. We change the persistence of the capital quality and TFP

volatility shocks to 0.95, decrease the standard deviations of the volatility shock innovations

to 0.1, and set the risk aversion of the agents to 30. The increased persistence of the volatility

shock amplifies its real effects, as agents expect the heightened volatility to last longer. The

smaller volatility shock innovations prevents unreasonably large swings in the volatility of

the data, which may make identification of any level responses to uncertainty shocks difficult

to detect. Finally, the increased risk aversion amplifies the agents responses to changes in

volatility. Even with this calibration, a one standard deviation capital quality level shock,

for example, leads to around a 10 times larger response in spreads and output relative to the



A-104

two volatility shocks, making the econometric exercise still quite difficult.

In addition to these first three changes, we also set the price adjustment cost parameter

φp = 0. This change is so that a TFP volatility shock will lead to an increase in output

growth and decrease in spreads whereas a capital quality volatility shock will lead to a

decrease in output growth and increase in spreads. This qualitative difference in output

movements from the two different types of volatility shocks gives us a clear benchmark on

which we can evaluate our sign restrictions identification strategy.

We take 25, 000 draws from the posterior distribution using our inverse Wishart model

and treat the first 12, 500 as burn-in. We use the same priors as those used in our empirical

exercise in the paper (section C.1.3 of the appendix).

We impose the ”traditional sign restrictions” of section C.1.11 of the appendix to identify

the two shocks (these were the sign restrictions from our original draft). For convenience,

they are reproduced here, with the only change being that the VAR system contains 2

variables instead of 4:

Assumption A3,DSGE
uf (Financial uncertainty shock). The uncertainty shock satisfies

A3,DSGE
uf,1 and A3,DSGE

uf,2 :

A3,DSGE
uf,1 : IRF [Σii,t+h|v∗t = e1;Rt] > 0 for h = 0 and i = 1, 2.

A3,DSGE
uf,2 : IRF [EBPt+h|v∗t = e1;Rt] > 0 for h = 0, 1, 2.

Assumption A3,DSGE
um (Macro uncertainty shock). The uncertainty shock satisfies

A3,DSGE
um,1 and A3,DSGE

um,2 :

A3,DSGE
um,1 : IRF [Σii,t+h|v∗t = e2;Rt] > 0 for h = 0 and i = 1, 2.

A3,DSGE
um,2 : IRF [EBPt+h|v∗t = e2;Rt] < 0 for h = 0, 1, 2.

Assumption A3,DSGE
o (Other second moment shocks).
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Figure A-55 Capital quality volatility shock
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The shaded red areas are the identified sets at the posterior mean reduced-form parameters to a 1 standard
deviation financial uncertainty shock. The dark red line is the impulse response produced by the theoretical
model to a 1 standard deviation capital quality volatility shock. We only keep impulse response functions
that satisfy Assumption A3,DSGE

uf .

Figure A-56 TFP volatility shock
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The shaded red areas are the identified sets at the posterior mean reduced-form parameters to a 1 standard
deviation macro uncertainty shock. The dark red line is the impulse response produced by the theoretical
model to a 1 standard deviation TFP volatility shock. We only keep impulse response functions that satisfy
Assumption A3,DSGE

um .

A3,DSGE
0 : For each j 6= 1, 2, at least one of the conditions specified in

A3,DSGE
uf,1 ,A3,DSGE

uf,2 and at least one in A3,DSGE
um,1 ,A3,DSGE

um,2 does not hold.

Figures A-55 and A-56 compare the identified sets at the posterior mean reduced-form
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parameters to the theoretical impulse response functions produced by the DSGE model.25

The identified sets at the posterior mean are objects of interest because they are consistent

estimator of the true identified sets from a frequentist perspective. The results show that

our sign restrictions are indeed able to recover the patterns in output and spreads following

a capital quality and TFP volatility shock. Specifically, our estimation finds that a capital

quality volatility shock decreases output, as in the theoretical model, and a TFP volatility

shock increases output. Our model does a reasonable job estimating the magnitudes of

the impulse response functions as well. Therefore, overall, we believe our sign restrictions

identification strategy does a good job in capturing the theoretical responses from a DSGE

model, despite the fact that our empirical model does not exactly nest the DSGE model.
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