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Abstract

We explore the evaluation (ranking) of point forecasts by a “stochastic loss distance”

(SLD) criterion, under which we prefer forecasts with loss distributions F (L(e)) ”close”

to the unit step function at 0. We show that, surprisingly, ranking by SLD corresponds

to ranking by expected loss.
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1 Introduction

Applied econometricians and others often want to evaluate the accuracy of competing point

forecasts. Invariably they evaluate accuracy by expected loss, E(L(e)), where e is forecast

error and the loss function L(e) satisfies L(0) = 0 and L(e) ≥ 0, ∀e. In this paper we begin

differently, evaluating forecasts by the distance between the cdf of L(e) and the cdf of a

perfect forecast.

2 Ranking Forecasts by Stochastic Loss Distance

We call our criterion “stochastic error distance” (SLD) We first define it precisely, and then

we relate it to the conventional expected loss criterion.

2.1 The SLD Criterion

We rank forecasts by a “stochastic loss distance” (SLD) criterion, under which we prefer the

forecast whose loss distribution F (L(e)) has smallest distance from the unit step function at

0,

F ∗(L(e)) =

{
0, L(e) < 0

1, L(e) ≥ 0.

F ∗(·) is the obvious reference loss distribution because nothing can dominate a benchmark

forecast whose errors consistently achieve zero loss; that is, a forecast whose errors achieve

F (L(e)) = F ∗(L(e)).

Hence we rank forecasts by the area,

SLD(F, F ∗, L(e)) =

∫ ∞
0

|F (L(e))− F ∗(L(e))| dL(e) (1)

=

∫ ∞
0

[1− F (L(e))] dL(e), (2)

where smaller SLD(·) is better. We illustrate the SLD idea in Figure 1; we prefer forecasts

whose error loss distribution has small shaded SLD area.



Figure 1: Error-loss cdf, F (L(e)), and its stochastic loss distance, SLD(L(e)).

2.2 Forward to the Past: The Relationship Between SLD(L(e))

and E(L(e))

We begin with a lemma.

Lemma 2.1 For random variable x with cdf F (x), if E(|x|)) <∞,

limc→∞ c(1− F (c)) = 0.

Proof We have

c(1− F (c)) = cP (X > c)

= c

∫ ∞
c

dP (x)

=

∫ ∞
c

c dP (x)

≤
∫ ∞
c

x dP (x) (replacing c with x)

=

∫ ∞
0

x dP (x)−
∫ c

0

x dP (x).

2



But this converges to zero as c→∞, because∫ ∞
0

x dP (x) ≤
∫ ∞
−∞
|x| dP (x) <∞.

Now let us proceed to characterize the relationship between SLD(L(e)) and E(L(e)).

Proposition 2.2 (Equivalence of Stochastic Loss Distance and Expected Loss)

Let L(e) be a forecast-error loss function satisfying L(0) = 0 and L(e) ≥ 0, ∀ e, with

E(|L(e)|)) <∞.1 Then

SLD(L(e)) =

∫ ∞
0

[1− F (L(e))] dL(e) (3)

= E(L(e)), (4)

where F (L(e)) is the cumulative distribution function of L(e). That is, SLD equals expected

loss for any loss function and error distribution.

Proof To evaluate E(L(e)) we integrate by parts:∫ c

0

L(e)f(L(e)) dL(e) = −L(e)[1− F (L(e))]
∣∣∣c
0

+

∫ c

0

[1− F (L(e))] dL(e)

= −c(1− F (c)) +

∫ c

0

[1− F (L(e))] dL(e).

Now letting c→∞ we have

E(L(e)) =

∫ ∞
0

L(e)f(L(e)) dL(e) = lim
c→∞
−c(1− F (c)) +

∫ ∞
0

[1− F (L(e))] dL(e)

= 0 +

∫ ∞
0

[1− F (L(e))] dL(e) (by Lemma (2.1))

= SLD(L(e)).

To the best of our knowledge, this result has not appeared in the forecast evaluation lit-

erature. It does appear, however, in different guise in the hazard and survival modeling

literature, in whose jargon “expected lifetime equals the integrated survival function.”2

1In an abuse of notation, we use “L(e)” to denote either the loss random variable or its realization. The
meaning will be clear from context.

2See, for example, Neumann (1999).
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3 Concluding Remarks

Our result is clearly negative: The obvious and intuitive approach of ranking forecasts

by SLD(L(e)) unfortunately takes us nowhere relative to ranking by E(L(e)), because

SLD(L(e)) is E(L(e)).

One route forward is to consider generalized notions of stochastic loss distance. Consider,

for example, a generalized weighted stochastic loss distance (GWSLD),

GWSLD(F, F ∗, L; p, w) =

∫
|F (L(e))− F ∗(L(e))|p w(L(e)) dL(e), (5)

where neither the exponent p nor the weighting function w(·) need be 1. Ranking forecasts

by GWSLD no longer corresponds to ranking by expected loss. But the GWSLD approach

lacks simplicity and appeal, insofar as it’s not obvious why one would generally want p 6= 1

and/or w(·) 6= 1.

A second route is to abandon the loss function, and hence expected loss minimization,

entirely, focusing instead on stochastic dominance. Building on important earlier work of

Linton et al. (2005), for example, Corradi and Swanson (2013) and Lee et al. (2014) consider

first-order stochastic dominance. Unfortunately, however, first-order stochastic dominance

is such a strong criterion that it’s unlikely that one forecast’s L(e) would ever first-order

stochastically dominate another’s. But weaker (higher-order) notions of stochastic domi-

nance may merit exploration for forecast accuracy comparisons.

Finally, one can stay with E(L) minimization but use ideas closely related to SLD to

suggest an appropriate loss function L. We do so in a companion paper, Diebold and Shin

(2014).
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