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Abstract

In this paper we develop a Bayesian semiparametric analysis of moment condition

models by casting the problem within the Exponentially Tilted Empirical Likelihood

(ETEL) framework. We use this framework to develop a fully Bayesian analysis of

correctly and misspecified moment condition models. We show that even under mis-

specification, the Bayesian ETEL posterior distribution satisfies the Bernstein - von

Mises (BvM) theorem. We also develop a unified approach based on marginal like-

lihoods and Bayes factors for comparing different moment restricted models and for

discarding any misspecified moment restrictions. Computation of the marginal likeli-

hoods is by the method of Chib (1995) as extended to Metropolis-Hastings samplers in

Chib and Jeliazkov (2001). We establish the model selection consistency of the marginal

likelihood and show that the marginal likelihood favors the model with the minimum

number of parameters and the maximum number of valid moment restrictions. When

the models are misspecified, the marginal likelihood model selection procedure selects

the model that is closer to the (unknown) true data generating process in terms of

the Kullback-Leibler divergence. The ideas and results in this paper broaden the theo-

retical underpinning and value of the Bayesian ETEL framework with many practical

applications. The discussion is illuminated through several examples.
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1 Introduction

Our goal in this paper is to develop a Bayesian analysis of moment condition models.

By moment condition models, we mean models that are specified only through moment

restrictions of the type EP [g(X,θ)] = 0, where g(X,θ) is a known vector-valued function

of a random vector X and an unknown parameter vector θ, and P is the unknown data

distribution. Models of this type, which arise frequently in statistics and econometrics,

see e.g. Broniatowski and Keziou (2012), can be attractive since full modeling of P is

not invoked and inferences about θ are based only on the partial information supplied by

the set of moment conditions. For instance, in a regression context, letting X = (y, x) and

y = xβ+ε, where y is the scalar response and x is a scalar predictor, one can learn about the

regression parameter β from the orthogonality assumption EP [(y − xβ)x] = 0 without fully

modeling the error distribution or the parameters of the error distribution. More generally,

β can be inferred in this setting from the orthogonality conditions EP [(y− xβ)z] = 0, given

a set of instrumental variables z. Examples of such moment condition models abound, but

for the most part the analysis of such models from the Bayesian perspective has proved

elusive since typical parametric and semiparametric Bayesian methods are reliant on a full

probability model of P .

On the frequentist side, the recent developments in empirical likelihood (EL) based meth-

ods, see e.g. Owen (1988, 1990, 2001), Qin and Lawless (1994), Kitamura and Stutzer (1997),

Imbens (1997), Schennach (2007), Chen and Van Keilegom (2009), and references therein,

have opened up a promising approach for dealing with moment condition models. There

are emerging cogent arguments for using the EL in Bayesian analysis. For example, Lazar

(2003) has argued that the EL can be used in a Bayesian framework in place of the data

distribution P . In fact, Schennach (2005) shows that it is possible to obtain a nonparametric

likelihood closely related to EL, called the exponentially tilted empirical likelihood (ETEL),

by marginalizing over P with a nonparametric prior that favors distributions that are close

to the empirical distribution function in terms of the Kullback-Leibler (KL) divergence while

satisfying the moment restrictions. In addition, Grendar and Judge (2009) show that the EL

is the mode of the posterior of P under a general prior on P . Thus, by combining either the

EL or the ETEL functions with a prior π(θ) on θ, moment condition models can in principle
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be subjected to a Bayesian semiparametric analysis. Applications of this idea are given for

instance by Lancaster and Jun (2010), Kim and Yang (2011), Yang and He (2012), Xi et al.

(2016) to handle moment condition models, by Rao and Wu (2010) in complex survey esti-

mation, and by Chaudhuri and Ghosh (2011), Porter et al. (2015), Chaudhuri et al. (2017) in

small area estimation. On the theory side, Yang and He (2012) show the asymptotic normal-

ity of the Bayesian EL posterior distribution of the quantile regression parameter, and Fang

and Mukerjee (2006) and Chang and Mukerjee (2008) study the higher-order asymptotic

and coverage properties of the Bayesian EL/ETEL posterior distribution for the population

mean, while Schennach (2005) and Lancaster and Jun (2010) consider the large-sample be-

havior of the Bayesian ETEL posterior distribution under the assumption that all moment

restrictions are valid. Alternative, non-EL/ETEL based approaches for moment condition

models, which we do not consider in this paper, have also been examined, for example, Bornn

et al. (2015), Florens and Simoni (2016) and Kitamura and Otsu (2011).

The purpose of this paper is to establish a number of new results for the Bayesian analysis

of moment condition models, within the ETEL framework, complementing and extending

the aforementioned papers in important directions. One goal is the Bayesian analysis of

moment condition models that are potentially misspecified. For this reason, our analysis

is built on the ETEL function which, as shown by Schennach (2007), leads to frequentist

estimators of θ that have the same orders of bias and variance (as a function of the sample

size) as the EL estimators but, importantly, maintain the root n convergence even under

model misspecification (see Schennach (2007, Theorem 1)). Within this useful framework, we

develop a fully Bayesian treatment of correctly and misspecified moment condition models.

We show that even under misspecification, the Bayesian ETEL posterior distribution has

desirable properties, and that it satisfies the Bernstein - von Mises (BvM) theorem. Another

goal is to develop a Bayesian approach for comparing different moment restricted models

and for discarding any misspecified moment restrictions. For an overview on Bayesian model

selection in standard models we refer to Robert (2007) and references therein. Our proposal

is to select the model with the largest marginal likelihood. Since one aim of this model

selection comparison is to discard misspecified moment restrictions, we do not consider the

model averaging perspective. In order to operationalize model comparisons in our set-up, in

particular when models are defined by different numbers of moment conditions, we show that
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it is necessary to linearly transform the moment functions g(X,θ) so that all the transformed

moments are included in each model. This linear transformation simply consists of adding an

extra parameter different from zero to the components of the vector g(X,θ) that correspond

to the restrictions not included in a specific model.

We compute the marginal likelihood by the method of Chib (1995), as extended to

Metropolis-Hastings samplers in Chib and Jeliazkov (2001). This method renders compu-

tation of the marginal likelihood simple and is a key feature of both our numerical and

theoretical analysis. Our asymptotic theory covers the following exhaustive possibilities:

the case where the models in the comparison set contain only valid moment restrictions,

the case where all the models in the set are misspecified, and finally the case where some

of the models contain only valid moment restrictions while the others contain at least one

invalid moment restriction. Our analysis shows that the marginal likelihood based selection

procedure is consistent in the sense that: (i) it discards misspecified moment restrictions,

(ii) it selects the model that is the “less misspecified” when comparing models that are all

misspecified, (iii) it selects the model that contains the maximum number of overidentifying

valid moment restrictions when comparing correctly specified models, and (iv) when some

models are correctly specified and some are misspecified, it selects the model that is correctly

specified and contains the maximum number of overidentifying moment conditions. These

important model selection consistency results are based on the asymptotic behavior of the

ETEL function, and the validity of the BvM theorem, both under correct specification and

misspecificition. These results, developed within a formal Bayesian setting, can be viewed

as complementary to the less Bayesian formulations described in Variyath et al. (2010) and

Vexler et al. (2013) where the focus is on quasi-Bayes factors constructed from the EL, and

Hong and Preston (2012) where models are compared based on a quasi-marginal likelihood

obtained from an approximation to the true P .

The rest of the article is organized as follows. In Section 2 we describe the moment

condition model, define the notion of misspecification in this setting, and then discuss the

prior-posterior analysis with the ETEL function. We then provide the first pair of major

results dealing with the asymptotic behavior of the posterior distribution for both correctly

specified and misspecified models. Section 3 introduces our model selection procedure based

on marginal likelihoods and the associated large sample results. Throughout the paper,
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for expository purposes, we include numerical examples. Then in Section 4 we discuss the

problems of variable selection in a count regression model and instrument validity in an

instrumental variable regression. Section 5 concludes. Proofs of our results are collected in

the Appendix and in the online Appendix.

2 Setting

Suppose thatX is an Rdx-valued random vector with (unknown) distribution P . Suppose

that the operating assumption is that the distribution P satisfies the d unconditional moment

restrictions

EP [g(X,θ)] = 0 (2.1)

where EP denotes the expectation taken with respect to P , g : Rdx × Θ 7→ Rd is a vector

of known functions with values in Rd, θ := (θ1, . . . , θp)
′ ∈ Θ ⊂ Rp is the parameter vector

of interest, and 0 is the d × 1 vector of zeros. We assume that EP [g(X,θ)] is bounded for

every θ ∈ Θ. We also suppose that we are given a random sample x1:n := (x1, . . . ,xn) on

X and that d ≥ p.

When the number of moment restrictions d exceeds the number of parameters p, the

parameter θ in such a setting is said to be overidentified (over restricted). In such a case,

there is a possibility that a subset of the moment conditions may be invalid in the sense that

the true data generating process is not contained in the collection of probability measures

that satisfy the moment conditions for all θ ∈ Θ. That is, there is no parameter θ in

Θ that is consistent with the moment restrictions (2.1) under the true data generating

process P . To deal with possibly invalid moment restrictions, we reformulate the moment

conditions in terms of an additional nuisance parameter V ∈ V ⊂ Rd. For example, if the

k-th moment condition is not expected to be valid, we subtract V = (V1, . . . , Vd) from the

moment restrictions where Vk is a free parameter and all other elements of V are zero. To

accommodate this situation, we rewrite the above conditions as the following augmented

moment conditions

EP [gA(X,θ,V )] = 0 (2.2)

where gA(X,θ,V ) := g(X,θ)−V . Note that in this formalism, the parameter V indicates
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which moment restrictions are active where by ‘active moment restrictions’ we mean the

restrictions for which the corresponding components of V are zero. In order to guarantee

identification of θ, at most (d − p) elements of V can be different than zero. If all the

elements of V are zero, we recover the restrictions in (2.1).

Let dv ≤ (d − p) be the number of non-zero elements of V and let v ∈ V ⊂ Rdv be the

vector that collects all the non-zero components of V . We call v the augmented parameter

and θ the parameter of interest. Therefore, the number of active moment restrictions is

d − dv. In the following, we write gA(X,θ,v) as a shorthand for gA(X,θ,V ), with v the

vector obtained from V by collecting only its non-zero components.

The central problem of misspecification of the moment conditions, mentioned in the

preceding paragraph, can now be formally defined in terms of the augmented moment con-

ditions.

Definition 2.1 (Misspecified model). We say that the augmented moment condition model

is misspecified if the set of probability measures implied by the moment restrictions does not

contain the true data generating process P for every (θ,v) ∈ Θ× V, that is, P /∈ P where

P =
⋃

(θ,v)∈Θ×V P(θ,v) and P(θ,v) = {Q ∈ M; EQ[gA(X,θ,v)] = 0} with M the set of all

probability measures on Rdx.

In a nutshell, a set of augmented moment conditions is misspecified if there is no pair

(θ,v) in (Θ × V) that satisfies EP [gA(X,θ,v)] = 0 where P is the true data generating

process. On the other hand, if such a pair of values (θ,v) exists then the set of augmented

moment conditions is correctly specified.

Throughout the paper, we use regression models to understand the various concepts and

ideas.

Example 1 (Linear regression model). Suppose that we are interested in estimating the

following linear regression model with an intercept and a predictor:

yi = α + βzi + ei, i = 1, . . . , n (2.3)

where (zi, ei)
′ are independently drawn from some distribution P . Under the assumption that
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EP [ei|zi] = 0, we can use the following moment restrictions to estimate θ := (α, β):

EP [ei(θ)] = 0, EP [ei(θ)zi] = 0, EP [(ei(θ))3] = v, (2.4)

where ei(θ) := (yi − α − βzi). The first two moment restrictions are derived from the

standard orthogonality condition and identify θ. The last restriction potentially serves as

additional information. In terms of the notation in (2.1) and (2.2), xi := (yi, zi), g(xi,θ) =

(ei(θ), ei(θ)zi, ei(θ)3)′, V = (0, 0, v)′, dv = 1 and gA(xi,θ,V ) = g(xi,θ)− (0, 0, v)′. If one

believes that the underlying distribution of ei is indeed symmetric, then one could use this

information by setting v to zero. Otherwise, it is desirable to treat v as an unknown object. If

the distribution of ei is skewed and v is forced to be zero, then the model becomes misspecified

because no (α, β) can be consistent with the three moment restrictions jointly under P . When

the augmented parameter v is treated as a free parameter, the model is correctly specified even

under asymmetry.

2.1 Prior-Posterior analysis

Consider now the question of prior-posterior analysis under the ETEL function. Although

our setting is similar to that of Schennach (2005), the presence of the augmented parameter

v and the possibility of misspecification, lead to a new analysis and new results.

For any (θ,v), define the convex hull of
⋃n
i=1 g

A(xi,θ,v) as the following convex subset

of Rd: {
∑n

i=1 pig
A(xi,θ,v); pi ≥ 0,∀i = 1, . . . , n,

∑n
i=1 pi = 1}. Now suppose that (i)

gA(x,θ,v) is continuous in x for every (θ,v) ∈ Θ × V (or has a finite number of step

discontinuities) and (ii) the interior of the convex hull of
⋃n
i=1 g

A(xi,θ,v) contains the

origin. Suppose also that the nonparametric prior on P is the mixture of uniform probability

densities described in Schennach (2005), which is capable to approximating any distribution

as the number of mixing components increases. Then, adapting the arguments of Schennach

(2005), the posterior distribution of (θ,v) after marginalization over P has the form

π(θ,v|x1:n) ∝ π(θ,v)p(x1:n|θ,v) (2.5)
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where π(θ,v) is the prior of (θ,v) and p(x1:n|θ,v) is the ETEL function defined as

p(x1:n|θ,v) =
n∏
i=1

p∗i (θ,v) (2.6)

and p∗i (θ,v) are the probabilities that minimize the KL divergence between the probabilities

(p1, . . . , pn) assigned to each sample observation and the empirical probabilities ( 1
n
, . . . , 1

n
),

subject to the conditions that the probabilities (p1, . . . , pn) sum to one and that the expec-

tation under these probabilities satisfies the given moment conditions:

max
p1,...,pn

n∑
i=1

[−pi log(npi)] (2.7)

subject to
n∑
i=1

pi = 1 and
n∑
i=1

pig
A(xi,θ,v) = 0. (2.8)

For numerical and theoretical purposes below, the preceding probabilities are computed

more conveniently from the dual (saddlepoint) representation as, for i = 1, . . . , n

p∗i (θ,v) :=
eλ̂(θ,v)′gA(xi,θ,v)∑n
j=1 e

λ̂(θ,v)′gA(xj ,θ,v)
, where λ̂(θ,v) = arg min

λ∈Rd

1

n

n∑
i=1

exp
(
λ′gA(xi,θ,v)

)
.

(2.9)

Therefore, the posterior distribution takes the form

π(θ,v|x1:n) ∝ π(θ,v)
n∏
i=1

eλ̂(θ,v)′gA(xi,θ,v)∑n
j=1 e

λ̂(θ,v)′gA(xj ,θ,v)
, (2.10)

which may be called the Bayesian Exponentially Tilted Empirical Likelihood (BETEL) pos-

terior distribution. It can be efficiently simulated by Markov chain Monte Carlo (MCMC)

methods. For example, the one block tailored Metropolis-Hastings (M-H) algorithm (Chib

and Greenberg, 1995) is applied as follows. Let q(θ,v|x1:n) denote a student-t distribution

whose location parameter is the mode of the log ETEL function and whose dispersion ma-

trix is the inverse of the negative Hessian matrix of the log ETEL function at the mode.

Then, starting from some initial value (θ(0),v(0)), we get a sample of draws from the BETEL

posterior by repeating the following steps for s = 1, . . . , S:

1. Propose (θ†,v†) from q(θ,v|x1:n) and solve for p∗i (θ
†,v†), 1 ≤ i ≤ n, from the Expo-
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nential Tilting saddlepoint problem (2.9).

2. Calculate the M-H probability of move

α
(

(θs−1,vs−1), (θ†,v†)
∣∣x1:n

)
= min

{
1,

π(θ†,v†|x1:n)

π(θs−1,vs−1|x1:n)

q(θs−1,vs−1|x1:n)

q(θ†,v†|x1:n)

}
.

3. Set (θs,vs) = (θ†,v†) with probability α((θs−1,vs−1), (θ†,v†)|x1:n). Otherwise, set

(θs,vs) = (θs−1,vs−1). Go to step 1.

Note that when the dimension of (θ,v) is large, the Tailored Randomized Block M-H

algorithm of Chib and Ramamurthy (2010) can be used instead for improved simulation

efficiency.

Prior specification. In our examples, we focus on two prior distributions. Under the first

prior, which we call the default prior, each element θk and vl of θ and v, respectively, is

given independent student-t distributions with ν = 2.5 degrees of freedom, location zero and

dispersion equal to 5:

θk ∼ t2.5(0, 52) and vl ∼ t2.5(0, 52). (2.11)

In the second prior, which we call the training sample prior, an initial portion of the sample

(which is not used for subsequent inferences) is used to find the ETEL estimate of the

unknown parameters, that is, the maximizer of the ETEL function (2.6) whose definition is

recalled in (C.1) in the Appendix. Then, the prior of each element of (θ′,v′)′ is equal to the

default prior except that now the location is set equal to the corresponding ETEL estimate.

To see the different implications of these prior distributions, consider two moment con-

dition models defined by the restrictions:

M1 : EP [g1(X,θ)] = 0, EP [g2(X,θ)] = 0

M2 : EP [g1(X,θ)] = 0, EP [g2(X,θ)] = v
(2.12)

where both moments restrictions are active under M1 but only the first is active under M2.

Then, under the default prior, a prior mean of 0 on v implies the belief that the second

moment restriction is likely to hold. On the other hand, in the training sample prior, the

prior location of v is determined by the ETEL estimate of v in the training sample. If this is
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substantially different from zero (relative to the prior dispersion) this prior implies the belief

that the second moment restriction is, a priori, less likely to be active.

Example 1 (continued). To illustrate the prior-posterior analysis, we generate yi, i =

1, . . . , n from the regression model in (2.3) with the covariate zi ∼ N (0.5, 1), intercept α = 0,

slope β = 1 and ei distributed according to the skewed distribution:

ei ∼

N (0.75, 0.752) with probability 0.5

N (−0.75, 1.252) with probability 0.5.
(2.13)

Our analysis is based on the moment restrictions in (2.4), that is,

gA(xi,θ, v) = (ei(θ), ei(θ)zi, ei(θ)3 − v)′, ei(θ) = yi − α− βzi,

with θ = (α, β). These moment conditions are correctly specified because v is free. Under

the default independent student-t prior in (2.11), the marginal posterior distributions of α,

β and v are summarized in Table 1 for two different values of n. It can be seen from the

.025 and .975 quantiles (called “lower” and “upper”, respectively) that the marginal posterior

distributions of α and β are already concentrated around the true values for n = 250 but

concentrate even more closely around the true values for n = 2000. This example showcases

the ease with which such Bayesian inferences are possible.

mean sd median lower upper ineff
n = 250

α -0.03 0.10 -0.03 -0.24 0.16 1.49
β 0.99 0.08 0.98 0.83 1.15 1.70
v -1.42 0.36 -1.39 -2.20 -0.82 3.21

n = 2000
α 0.00 0.03 0.00 -0.06 0.06 1.30
β 0.99 0.03 0.99 0.93 1.04 1.21
v -0.97 0.10 -0.97 -1.18 -0.78 1.34

Table 1: Posterior summary for two simulated sample sizes from Example 1 (a regression model
with skewed error distribution). The true value of α is 0 and that of β is 1. The summaries are
based on 10, 000 MCMC draws beyond a burn-in of 1000. The M-H acceptance rate is around 90%
in both cases. “Lower” and “upper” refer to the .025 and .975 quantiles of the simulated draws,
respectively, and “ineff” to the inefficiency factor, the ratio of the numerical variance of the mean
to the variance of the mean assuming independent draws: an inefficiency factor close to 1 indicates
that the MCMC draws, although serially correlated, are essentially independent.
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Notation. In Sections 2.2 and 2.3, and in the online Appendix we use the following nota-

tions. For ease of exposition, we denote ψ := (θ,v), ψ ∈ Ψ with Ψ := Θ×V . Moreover, ‖·‖F
denotes the Frobenius norm and ‖ · ‖ the Euclidean norm. The notation ‘ p→’ is for conver-

gence in probability with respect to the product measure P n =
⊗n

i=1 P . The log-likelihood

function for one observation is denoted by ln,ψ:

ln,ψ(x) := log
eλ̂(ψ)′gA(x,ψ)∑n
j=1 e

λ̂(ψ)′gA(xj ,ψ)
= − log n+ log

eλ̂
′
gA(x,ψ)

1
n

∑n
j=1

[
eλ̂
′
gA(xj ,ψ)

]
so that the log-ETEL function is log p(x1:n|ψ) =

∑n
i=1 ln,ψ(xi). For a set A ⊂ Rm, we

denote by int(A) its interior relative to Rm. Further notations are introduced as required.

2.2 Asymptotic Properties: correct specification

In this section, we first introduce additional notations and assumptions for correctly

specified models. Under these assumptions and Assumptions 5-6 in the online Appendix,

we establish both the large sample behavior of the BETEL posterior distribution and, in

Section 3, the model selection consistency of our marginal likelihood procedure.

Let θ∗ be the true value of the parameter of interest θ and v∗ be the true value of the

augmented parameter. So, ψ∗ := (θ∗,v∗). The true value v∗ is equal to zero when the non-

augmented model (2.1) is correctly specified. Moreover, let ∆ := EP [gA(X,ψ∗)g
A(X,ψ∗)

′]

and Γ := EP
[

∂
∂ψ′
gA(X,ψ∗)

]
. Assumption 1 requires that the augmented model is correctly

specified in the sense that there is a value of ψ such that (2.2) is satisfied by P , and that

this value is unique. A necessary condition for the latter is that (d− p) ≥ dv ≥ 0.

Assumption 1. Model (2.2) is such that ψ∗ ∈ Ψ is the unique solution to EP [gA(X,ψ)] =

0.

The next assumption concerns the prior distribution and is a standard assumption to

establish asymptotic properties of Bayesian procedures.

Assumption 2. (a) π is a continuous probability measure that admits a density with respect

to the Lebesgue measure; (b) π is positive on a neighborhood of ψ∗.

For a correctly specified moment conditions model, the asymptotic normality of the

BETEL posterior is established in the following theorem where we denote by π(
√
n(ψ −
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ψ∗)|x1:n) the posterior distribution of
√
n(ψ − ψ∗). The result shows that the BETEL

posterior distribution has a Gaussian limiting distribution and that it concentrates on a

n−1/2-ball centered at the true value of the parameter. An informal discussion of this behavior

is given by Schennach (2005) but without the required assumptions. Theorem 2.1 below

provides these assumptions. The proof of the result is based on e.g. Lehmann and Casella

(1998) and Ghosh and Ramamoorthi (2003) and is given in the online Appendix C.

Theorem 2.1 (Bernstein - von Mises – correct specification). Under Assumptions 1, 2 and

Assumptions 5, 6 in the online Appendix and if in addition, for any δ > 0, there exists an

ε > 0 such that, as n→∞

P

(
sup

‖ψ−ψ∗‖>δ

1

n

n∑
i=1

(
ln,ψ(xi)− ln,ψ∗(xi)

)
≤ −ε

)
→ 1, (2.14)

then the posteriors converge in total variation towards a normal distribution, that is,

sup
B

∣∣∣π(
√
n(ψ −ψ∗) ∈ B|x1:n)−N0,(Γ′∆−1Γ)−1(B)

∣∣∣ p→ 0 (2.15)

where B ⊆ Ψ is any Borel set.

According to this result, the posterior distribution π(ψ|x1:n) of ψ is asymptotically nor-

mal, centered on the true value ψ∗ and with variance n−1 (Γ′∆−1Γ)
−1. Thus, the posterior

distribution has the same asymptotic variance as the efficient Generalized Method of Mo-

ments estimator of Hansen (1982) (see also Chamberlain (1987)). Assumption (2.14) in this

theorem is a standard identifiability condition (see e.g. Lehmann and Casella (1998, As-

sumption 6.B.3)) that controls the behavior of the log-ETEL function at a distance from

ψ∗. Controlling this behavior is important because the posterior involves integration over

the whole range of ψ. To understand the meaning of this assumption, we remark that

asymptotically the log-ETEL function ψ 7→
∑n

i=1 ln,ψ(xi) is maximized at the true value

ψ∗ because the model is correctly specified. Hence, Assumption (2.14) means that if the

parameter ψ is “far” from the true value ψ∗ then the log-ETEL function has to be small,

that is, has to be far from the maximum value
∑n

i=1 ln,ψ∗(xi).
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2.3 Asymptotic Properties: misspecification

In this section, we consider the case where the model is misspecified in the sense of

Definition 2.1 and establish that, even in this case, the BETEL posterior distribution has

good frequentist asymptotic properties as the sample size n increases. Namely, we show that

the BETEL posterior of
√
n(ψ − ψ∗) is asymptotically normal and the BETEL posterior

of ψ concentrates on a n−1/2-ball centred at the pseudo-true value of the parameter. To

the best of our knowledge, these properties have not been established yet for misspecified

moment condition models.

Because in misspecified models there is no value of ψ for which the true data distribu-

tion P satisfies the restriction (2.2), we need to define a pseudo-true value for ψ. The latter

is defined as the value of ψ that minimizes the KL divergence K(P ||Q∗(ψ)) between the

true data distribution P and a distribution Q∗(ψ) defined as Q∗(ψ) := arginfQ∈PψK(Q||P ),

where K(Q||P ) :=
∫

log(dQ/dP )dQ and Pψ is defined in Definition 2.1. We remark that

these two KL divergences are the population counterparts of the KL divergences used

for the definition of the ETEL function in (2.6): the empirical counterpart of K(Q||P )

is used to construct the p∗i (ψ) probabilities and is given by (2.7), while the empirical

counterpart of K(P ||Q∗(ψ)) is given by log(1/n) −
∑n

i=1 ln,ψ(xi)/n where
∑n

i=1 ln,ψ(xi)

is the log-ETEL function if the dual theorem holds. Roughly speaking, the pseudo-true

value is the value of ψ for which the distribution that satisfies the corresponding restric-

tions (2.2) is the closest to the true P , in the KL sense. By using the dual represen-

tation of the KL minimization problem, the P -density dQ∗(ψ)/dP admits a closed-form:

dQ∗(ψ)/dP = eλ◦(ψ)′gA(X,ψ)/EP
[
eλ◦(ψ)′gA(X,ψ)

]
where λ◦(ψ) is the pseudo-true value of

the tilting parameter defined as the solution of EP [exp{λ′gA(X,ψ)}gA(X,ψ)] = 0 which

is unique by the strict convexity of EP [exp{λ′gA(X,ψ)}] in λ. Therefore,

λ◦(ψ) := arg min
λ∈Rd

EP
[
eλ
′gA(X,ψ)

]
,

ψ◦ := arg max
ψ∈Ψ

EP log

[
eλ◦(ψ)′gA(X,ψ)

EP
[
eλ◦(ψ)′gA(X,ψ)

]] . (2.16)

However, in a misspecified model, the dual theorem is not guaranteed to hold and so ψ◦ de-

fined in (2.16) is not necessarily equal to the pseudo-true value defined as the KL-minimizer.
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In fact, when the model is misspecified, the probability measures in P :=
⋃
ψ∈ΨPψ, which

are implied by the model, might not have a common support with the true P , see Sueishi

(2013) for a discussion on this point. Following Sueishi (2013, Theorem 3.1), in order to guar-

antee identification of the pseudo-true value by (2.16) and validity of the dual theorem we

introduce the following assumption. This assumption replaces Assumption 1 in misspecified

models.

Assumption 3. For a fixed ψ ∈ Ψ, there exists Q ∈ Pψ such that Q is mutually absolutely

continuous with respect to P , where Pψ is defined in Definition 2.1.

This assumption implies that Pψ is non-empty. A similar assumption is also made by

Kleijn and van der Vaart (2012) to establish the BvM under misspecification. Moreover,

because consistency in misspecified models is defined with respect to the pseudo-true value

ψ◦, we need to replace Assumption 2 (b) by the following assumption which, together with

Assumption 2 (a), requires the prior to put enough mass to balls around ψ◦.

Assumption 4. The prior distribution π is positive on a neighborhood of ψ◦ where ψ◦ is

as defined in (2.16).

A first step to establish the BvM theorem is to prove that the misspecified model satisfies

a stochastic Local Asymptotic Normality (LAN) expansion around the pseudo-true value ψ◦.

Namely, that the log-likelihood ratio ln,ψ − ln,ψ◦ , evaluated at a local parameter around the

pseudo-true value, is well approximated by a quadratic form. Such a result is established in

Theorem C.1 in the online Appendix C. A second key ingredient for establishing the BvM

theorem is the requirement that, as n→∞, the posterior of ψ concentrates and puts all its

mass on Ψn := {‖ψ −ψ◦‖ ≤Mn/
√
n}, where Mn is any sequence such that Mn →∞. We

prove this result in Theorem C.2 in the online Appendix C.

Theorem 2.2 states that the limit of the posterior distribution of
√
n(ψ−ψ◦) is a Gaus-

sian distribution with mean and variance defined in terms of the population counterpart of

ln,ψ(x), which we denote by Ln,ψ(x) := log exp(λ◦(ψ)′gA(x,ψ))
EP [exp(λ◦(ψ)′gA(x,ψ))]

− log n and which involves

the pseudo-true value λ◦. With this notation, the variance and mean of the Gaussian limiting

distribution are V −1
ψ◦

:= −(EP [L̈n,ψ◦ ])
−1 and ∆n,ψ◦ := 1√

n

∑n
i=1 V

−1
ψ◦

L̇n,ψ◦(xi), respectively,

where L̇n,ψ◦ and L̈n,ψ◦ denote the first and second derivatives of the function ψ 7→ Ln,ψ

evaluated at ψ◦. Let π(
√
n(ψ −ψ◦)|x1:n) denote the posterior distribution of

√
n(ψ −ψ◦).
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Theorem 2.2 (Bernstein - von Mises – misspecification). Assume that the matrix V ψ◦ is

nonsingular and that Assumptions 2 (a), 3, 4 and Assumptions 5 (a)-(d), 6 (b), 7, and 8

in the online Appendix hold. If in addition there exists a constant C > 0 such that for any

sequence Mn →∞, as n→∞

P

(
sup
ψ∈Ψc

n

1

n

n∑
i=1

(
ln,ψ(xi)− ln,ψ◦(xi)

)
≤ −CM

2
n

n

)
→ 1, (2.17)

then the posteriors converge in total variation towards a normal distribution, that is,

sup
B

∣∣∣π(
√
n(ψ −ψ◦) ∈ B|x1:n)−N∆n,ψ◦ ,V

−1
ψ◦

(B)
∣∣∣ p→ 0 (2.18)

where B ⊆ Ψ is any Borel set.

Condition (2.17) involves the log-likelihood ratio ln,ψ(x)−ln,ψ◦(x) and is an identifiability

condition, standard in the literature, and with a similar interpretation as condition (2.14).

Theorem 2.2 states that, in misspecified models, the sequence of posterior distributions

converges in total variation to a sequence of normal distributions with random mean and

fixed covariance matrix V −1
ψ◦

. By using the first order condition for ψ◦ it can be shown that

the random mean ∆n,ψ◦ has mean zero. We stress that the BvM result of Theorem 2.2 for

the BETEL posterior distribution does not directly follow from the assumptions and results

in Kleijn and van der Vaart (2012) because the ETEL function contains random quantities.

Therefore, we need to strengthen the assumptions in order to establish that a stochastic

LAN expansion holds for our case.

As the next lemma shows, the quantity ∆n,ψ◦ relates to the Schennach (2007)’s ETEL

frequentist estimator ψ̂ (whose definition is recalled in (C.1) in the Appendix for conve-

nience). Because of this connection, it is possible to write the location of the normal limit

distribution in a more familiar form in terms of the semi-parametric efficient frequentist

estimator ψ̂.

Lemma 2.1. Assume that the matrix V ψ◦ is nonsingular and that Assumption 3 and As-

sumptions 5 (a)-(d), 6 (b), 7, and 8 in the online Appendix hold. Then, the ETEL estimator

ψ̂ satisfies
√
n(ψ̂ −ψ◦) =

1√
n

n∑
i=1

V −1
ψ◦

L̇n,ψ◦ + op(1). (2.19)
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Therefore, Lemma 2.1 implies that the BvM Theorem 2.2 can be reformulated with the

sequence
√
n(ψ̂ −ψ◦) as the location of the normal limit distribution, that is,

sup
B

∣∣∣π(ψ ∈ B|x1:n)−Nψ̂,n−1V −1
ψ◦

(B)
∣∣∣ p→ 0. (2.20)

Two remarks are in order: (I) the limit distribution of
√
n(ψ̂−ψ◦) is centred on zero because

EP [L̇n,ψ◦ ] = 0; (II) the asymptotic covariance matrix of
√
n(ψ̂−ψ◦) is V −1

ψ◦
EP [L̇n,ψ◦L̇

′
n,ψ◦

]V −1
ψ◦

(which is also derived in Schennach (2007, Theorem 10)) and, because of misspecification,

it does not coincide with the limiting covariance matrix in the BvM theorem. This conse-

quence of misspecification is also discussed in Kleijn and van der Vaart (2012) and implies

that, for α ∈ (0, 1), the central (1 − α) Bayesian credible sets are not in general (1 − α)

confidence sets, even asymptotically. In fact, while credible sets are correctly centered, their

width/volume need not be correct since the asymptotic variance matrix in the BvM is not

the sandwich asymptotic covariance matrix of the frequentist estimator. See Example 2 in

the online Appendix A for an illustration of misspecified models and pseudo-true value.

3 Bayesian Model Selection

3.1 Basic idea

Now suppose that there are countable candidate models indexed by `. Suppose that

model ` is characterized by

EP [g`(X,θ`)] = 0, (3.1)

with θ` ∈ Θ` ⊂ Rp` , and ` = 1, . . . , J for some J ≥ 2. Different models involve different

parameters of interest θ` and/or different g` functions. If X contains a dependent variable

and covariates it might be that the covariates are not the same for all models, however to

lighten the notation we do not explicit this difference across the models.

One or all models may be misspecified. The goal is to compare these models and select

the best model. By best model we mean the model that contains the maximum number

of over-identifying conditions when all models are correctly specified, and when all models

are misspecified, we mean the model that is the closest to the true P . Our purpose in

this section is to establish a collection of results on the search for such a best model. We
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show that this search can be carried out with the help of the marginal likelihoods (defined

as the integral of the sampling density over the parameters with respected to the prior

density) of the competing models. The model with the largest marginal likelihood satisfies a

model selection consistency property in that the model chosen in this way is the best model

asymptotically. This property, which has not been established in this context before, is of

enormous practical and theoretical importance.

Before getting to the details, it is crucial to understand that there are some subtleties

involved in comparing different moment condition models. The central problem is that the

marginal likelihood of models with different sets of moment restrictions and different param-

eters may not be comparable. In fact, when we have different sets of moment restrictions, we

need to be careful about dealing with, and interpreting, unused moment restrictions. This

can be best explained by an example.

Example 1 (continued). Suppose we do not know if ei is symmetric. In this case, one might

be inclined to compare the following two candidate models:

Model 1 : EP [ei(θ)] = 0, EP [ei(θ)zi] = 0.

Model 2 : EP [ei(θ)] = 0, EP [ei(θ)zi] = 0, EP [(ei(θ))3] = 0.
(3.2)

where θ := (α, β) is the same parameter in the two models and ei(θ) := (yi − α − βzi). As

written, these two models are not comparable because the convex hulls associated with the two

models do not have the same dimension. More precisely, let co1 := {
∑n

i=1 pi(ei(θ), ei(θ)zi)
′; pi ≥

0,∀i = 1, . . . , n,
∑n

i=1 pi = 1} be the convex hull associated with Model 1, and co2 :=

{
∑n

i=1 pi(ei(θ), ei(θ)zi, ei(θ)3)′; pi ≥ 0,∀i = 1, . . . , n,
∑n

i=1 pi = 1} be the convex hull as-

sociated with Model 2. Because co1 and co2 have different dimensions, the p∗i (θ) in the

two ETEL functions are not comparable because they enforce the zero vector constraint (the

second constraint in (2.8)) in different spaces (R2 and R3).

The foregoing problem can be overcome as follows. We start by defining a grand model

that nests all the models that we want to compare. This grand model is constructed such

that: (1) it includes all the moment restrictions in the models and, (2) if the same moment

restriction is included in two or more models but involves a different parameter in different

models, then the grand model includes the moment restriction that involves the parameter
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of largest dimension. We write the grand model as EP [gG(X,θG)] = 0 where gG has

dimension d, and θG includes the parameters of all models. Next, each original model is

obtained from this grand model by first subtracting a vector of nuisance parameters V and

then restricting θG and V appropriately. More precisely, an equivalent version of the original

model is obtained by: (I) setting equal to zero the components of θG in the shared moment

restrictions that are not present in the original model, (II) letting free the components of

V that correspond to the over-identifying moment restrictions not present in the original

model and, (III) setting equal to zero the components of V that correspond to moment

restrictions present in the original model and to moment restrictions that exactly identify

the extra parameters arising from the other models.

The set of models that emerge from this strategy are equivalent to the original collection

but, crucially, are now comparable. Also importantly for practice, as our illustrations of

this strategy show below, the strategy just described is simple to operationalize. With this

formulation, model `, denoted by M`, is then defined from the grand model as

EP [gA(X,θ`,v`)] = 0, θ` ∈ Θ` ⊂ Rp` (3.3)

where gA(X,θ`,v`) := gG(X,θ`) − V ` with V ` ∈ V ⊂ Rd and with v` ∈ V` ⊂ Rdv` being

the vector that collects all the non-zero components of V `. We assume that 0 ≤ dv` ≤ d−p`
in order to guarantee identification of θ`. The parameter v` is the augmented parameter

and θ` is the parameter of interest for model ` that has been obtained from θG by doing the

transformation in (I). Hereafter, we use the notation ψ` := (θ`,v`) ∈ Ψ` with Ψ` := Θ×V`.

Example 1 (continued). To be able to compare Model 1 and Model 2 in (3.2), we construct

the grand model as EP [gG(xi,θ)] := EP [(ei(θ), ei(θ)zi, ei(θ)3)′]. With respect to this grand

model, Model 1 and Model 2 are reformulated as M1 and M2, respectively, by applying (II)

and (III) above:

M1 : EP [ei(θ)] = 0, EP [ei(θ)zi] = 0, EP [(ei(θ))3] = v

M2 : EP [ei(θ)] = 0, EP [ei(θ)zi] = 0, EP [(ei(θ))3] = 0.
(3.4)

So, ψ1 = (θ′,v)′ and ψ2 = θ. The convex hulls of M1 and M2 have both dimension 3 and

more importantly, if co(M1) and co(M2) denote these two convex hulls, we have co(M1) =
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co(M2) − V where V = (0, 0, v)′ so that the two models are comparable. It is important to

note how Model 1 in (3.2) and M1 deal with uncertainty about the third moment restriction:

Model 1 in (3.2) ignores its uncertainty completely while M1 models the degree of uncertainty

through the augmented parameter v. This argument is not limited to comparing two models.

When we have multiple models, we need to make sure that the grand model encompasses all

candidate models through augmented parameters.

We note that this strategy covers both nested and non-nested models. We say that two

models are non-nested, in their original formulation, if neither model can be obtained from

the other by eliminating some moment restriction, or by setting to zero some parameter, or

both. Points (II) and (III) above are important for the treatment of such non-nested models.

In fact, points (II) and (III) imply that, if there are moment restrictions not present in the

original model that involve parameters that are not in the original model, then a number

of these extra moment restrictions equal to the number of the extra parameters has to be

included. This does not alter the original model if these extra moment restrictions exactly

identify the extra parameters and so place no restrictions on the data generating process.

Moreover, despite the notation, for non-nested models θ` in (3.3) might be larger than the

parameter in the original model `.

In what follows, we show how to compute the marginal likelihood for a model. Then,

in Section 3.3 we formally show that, with probability approaching one as the number of

observations increases, the marginal likelihood based selection procedure favors the model

with the minimum number of parameters of interest and the maximum number of valid

moment restrictions. We also consider the situation where all models are misspecified. In

this case, our model selection procedure selects the model that is closer to the true data

generating process in terms of the KL divergence.

3.2 Marginal Likelihood

For each model M`, we impose a prior distribution for ψ` on Ψ`, and obtain the BETEL

posterior distribution based on (2.10). Then, we select the model with the largest marginal

likelihood, denoted by m(x1:n;M`), which we calculate by the method of Chib (1995) as

extended to Metropolis-Hastings samplers in Chib and Jeliazkov (2001). This method makes
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computation of the marginal likelihood simple and is a key feature of our procedure. The

main advantage of the Chib (1995) method is that it is calculable from the same inputs and

outputs that are used in the MCMC sampling of the posterior distribution. The starting

point of this method is the following identity of the log-marginal likelihood introduced in

Chib (1995):

logm(x1:n;M`) = log π(ψ̃
`|M`) + log p(x1:n|ψ̃

`
,M`)− log π(ψ̃

`|x1:n,M`), (3.5)

where ψ̃
`
is any point in the support of the posterior (such as the posterior mean) and the

dependence on the model M` has been made explicit. The first two terms on the right-hand

side of this decomposition are available directly whereas the third term can be estimated from

the output of the MCMC simulation of the BETEL posterior distribution. For example, in

the context of the one block MCMC algorithm given in Section 2.1, from Chib and Jeliazkov

(2001), we have that

π(ψ̃
`|x1:n,M`) =

E1

{
α
(
ψ`, ψ̃

`|x1:n,M`

)
q(ψ̃

`
)x1:n,M`)

}
E2

{
α(ψ̃

`
,ψ`|x1:n,M`)

}
where E1 is the expectation with respect to π(ψ`|x1:n,M`) and E2 is the expectation with

respect to q(ψ`|x1:n,M`). These expectations can be easily approximated by simulations.

3.3 Model selection consistency results

In this section we establish the consistency of our marginal likelihood based selection

procedure for the following exhaustive cases: the case where the models in the comparison

set contain only valid moment restrictions, the case where all the models in the set are

misspecified, and finally the case where some of the models contain only valid moment

restrictions while the others contain at least one invalid moment restriction. Our proofs of

consistency are based on: (I) the results of the BvM theorems for correctly and misspecified

models stated in Sections 2.2 and 2.3, and (II) the analysis of the asymptotic behavior of the

ETEL function under correct and misspecification which we develop in the online Appendix

(see Lemmas D.1 and D.3).

The first theorem states that, if the active moment restrictions are all valid, then the
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marginal likelihood selects the model that contains the maximum number of overidentifying

conditions, that is, the model with the maximum number of active moment restrictions and

the smallest number of parameters of interest. This means that the marginal likelihood-based

selection procedure enforces parsimony.

For a model M`, the dimension of the parameter of interest θ` to be estimated is p` while

the number of active moment restrictions (included in the model for the estimation of θ`) is

(d− dv`). Consider two generic models M1 and M2. Then, dv2 < dv1 means that model M2

contains more active restrictions than modelM1, and p2 < p1 means that modelM1 contains

more parameters of interest to be estimated than M2.

Theorem 3.1. Let Assumption 2, Assumptions 5, 6 in the online Appendix and (2.14) hold,

and consider J < ∞ different models M`, ` = 1, . . . , J , that satisfy Assumption 1, that is,

they are all correctly specified. Then,

lim
n→∞

P

(
max
6̀=j

logm(x1:n;M`) < logm(x1:n;Mj)

)
= 1

if and only if pj + dvj < p` + dv`, ∀` 6= j.

The result of the theorem implies that, with probability approaching 1, the Bayes factor

Bj` := m(x1:n;Mj)/m(x1:n;M`) is larger than 1 for every ` 6= j. The result in the theorem

is an equivalence result saying that, if we compare models that contain only valid moment

restrictions, then the marginal likelihood selects a model Mj if and only if Mj contains

the maximum number of overidentifying conditions among all the compared models. An

illustration of this theorem is provided in Example 3 in the online Appendix.

Next, we consider the case where all models are wrong in the sense of Definition 2.1

and establish a major result of enormous practical significance. The result states that

if we compare J misspecified models, then the marginal likelihood-based selection pro-

cedure selects the model with the smallest KL divergence K(P ||Q∗(ψ`)) between P and

Q∗(ψ`), where Q∗(ψ`) is such that K(Q∗(ψ`)||P ) = infQ∈P
ψ`
K(Q||P ) and dQ∗(ψ`)/dP =

eλ◦(ψ)′gA(X,ψ)/EP
[
eλ◦(ψ)′gA(X,ψ)

]
by the dual theorem, as defined in Section 2.3. Because

the I-projection Q∗(ψ`) on Pψ` is unique (Csiszar (1975)), which Q∗(ψ`) is closer to P (in

terms of K(P ||Q∗(ψ`))) depends only on the “amount of misspecification” contained in each

model Pψ` .
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Theorem 3.2. Let Assumptions 2 – 4, Assumptions 5 – 8 in the online Appendix and (2.17)

be satisfied. Let us consider the comparison of J < ∞ models Mj, j = 1, . . . , J that all use

misspecified moments, that is, Mj does not satisfy Assumption 1, ∀j. Then,

lim
n→∞

P

(
logm(x1:n;Mj) > max

`6=j
logm(x1:n;M`)

)
= 1

if and only if K(P ||Q∗(ψj)) < min 6̀=jK(P ||Q∗(ψ`)), where K(P ||Q) :=
∫

log(dP/dQ)dP .

Similarly as in Theorem 3.1, Theorem 3.2 establishes the equivalence result that, if we

compare models that all use misspecified moments, then the marginal likelihood selects a

model Mj if and only if Mj has the smallest Kullback-Leibler divergence K(P ||Q∗(ψj)) be-

tween the true data distribution P and Q∗(ψj). Remark that the condition K(P ||Q∗(ψj)) <

K(P ||Q∗(ψ`)), ∀` 6= j, given in the theorem does not depend on a particular value of ψj

and ψ`. Indeed, the result of the theorem hinges on the fact that the marginal likelihood

selects the model with the Q∗(ψj) closer to P , that is, the model that contains the “less

misspecified” moment restrictions for every value of ψj.

The result of the theorem also applies to the case where we compare a correctly spec-

ified model M1 to misspecified models. Indeed, if model M1 is correctly specified then

K(P ||Q∗(ψ1)) = 0 while if model Mj is misspecified then K(P ||Q∗(ψj)) > 0.

Example 4 (Model selection when all models are misspecified). For i = 1, . . . , n, let yi =

α + βzi + ei. Here, we generate zi ∼ N (0.5, 1) and ei from the skewed distribution in

(2.13) with mean zero and variance 1.625, independently of zi. Let θ := (α, β)′, ei(θ) :=

(yi − α− βzi) and the true value of θ be (0, 1)′. We compare the following models. Model 4:

EP [(ei(θ), ei(θ)zi, ei(θ)3, ei(θ)2 − 2)′] = 0, Model 5: EP [(ei(θ), ei(θ)zi, ei(θ)2 − 2)′] = 0 and

Model 6: EP [ei(θ), ei(θ)2 − 2] = 0 which, written in terms of an encompassing grand model,

become respectively:

M4 : EP [ei(θ)] = 0, EP [ei(θ)zi] = 0, EP [(ei(θ))3] = 0, EP [(ei(θ))2 − 2] = 0

M5 : EP [ei(θ)] = 0, EP [ei(θ)zi] = 0, EP [(ei(θ))3] = v1, EP [(ei(θ))2 − 2] = 0

M6 : EP [ei(θ)] = 0, EP [ei(θ)zi] = v2, EP [(ei(θ))3] = v1, EP [(ei(θ))2 − 2] = 0

(3.6)

with ψ4 = θ, ψ5 = (θ, v1)′ and ψ6 = (θ, v1, v2)′. Thus, compared to Example 3 in the online

Appendix, here we change the moment restriction that involves the variance of ei. When
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the underlying distribution has variance different from 2, all models M4, M5, and M6 are

misspecified due to the new moment restriction: EP [(ei(θ))2 − 2] = 0. In Table 2, we report

the percentage of times the marginal likelihood selects each model out of 500 trials, by sample

size, under the default and training sample prior (based on 50 prior observations).

Because we know the true data generating process, we can compute, for each model, the

KL divergence between the true model P and Q∗(ψj
◦) at the pseudo-true parameter ψj

◦ for

model Mj based on (2.16). Using 10, 000, 000 simulated draws from P , our calculations show

that K(P ||Q∗(ψj
◦)) is equal to 0.0283 for M4, 0.0096 for M5, and 1.4901 × 10−13 for M6.

Intuitively, M6 is the closest to the true model since it imposes fewer restrictions (only two

moment restrictions are active). This means that the set of probability distributions that

satisfy M6 is larger than (and contains) the sets of probabilities that conform with M4 and

M5. This flexibility ensures that the divergence between the set of probabilities that satisfy

M6 and P (as measured by the KL) will be at least as small as for M4 and M5. As the

empirical results show, under each prior, the best model M6 picked out by our marginal

likelihood ranking is also the model that is the closest to the true model, consistent with the

prediction of our theory.

Default prior Training sample prior
Model M4 M5 M6 M4 M5 M6

n = 250 2.6 56.8 40.5 3.0 62.0 35.0
n = 500 0.2 28.1 71.6 1.0 31.0 68.0
n = 1000 0.0 4.2 95.8 0.0 4.0 96.0
n = 2000 0.0 0.0 100.0 0.0 0.0 100.0

Table 2: Model selection when all models are misspecified. Frequency (%) of times each of the
three models in Example 4 are selected by the marginal likelihood criterion in 500 trials, by sample
size, for two different prior distributions.

Finally, suppose that some of the models that we consider are correctly specified and

others are misspecified in the sense of Definition 2.1. This means that, for the latter, one

or more of the active moment restrictions are invalid, or in other words, that one or more

components of V are incorrectly set equal to zero. Indeed, all the models for which the active

moment restrictions are valid are not misspecified even if some invalid moment restrictions

are included among the inactive moment restrictions. This is because there always exists a
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value v ∈ Rdv` that equates the invalid moment restriction. In this case, the true v∗ for this

model will be different from the zero vector: v∗ 6= 0 and the true value of the corresponding

tilting parameter λ will be zero.

For this situation, Theorems 3.1 and 3.2 together imply an interesting corollary: the

marginal likelihood selects the correctly specified model that contains the maximum number

of overidentifying moment conditions. Without loss of generality, denote this model by M1.

Then we have the following result.

Corollary 3.1. Let Assumptions 2 – 4, and Assumptions 5 – 8 in the online Appendix

hold, and let either (2.14) or (2.17) be satisfied, depending on the model. Let us consider

the comparison of J different models Mj, j = 1, 2, . . . , J where M1 satisfies Assumption 1

whereas Mj, j 6= 1 can either satisfy Assumption 1 or not. Then,

lim
n→∞

P

(
logm(x1:n;M1) > max

j 6=1
logm(x1:n;Mj)

)
= 1

if and only if (p1 + dv1) < (pj + dvj), ∀j 6= 1 such that Mj satisfies Assumption 1.

This corollary says that, if we compare a set of models, some of them are correctly specified

and the others are misspecified, then the marginal likelihood selects model M1 if and only

if M1 is correctly specified and contains the maximum number of overidentifying moment

conditions among the correctly specified models.

4 Applications

The techniques discussed in the previous sections have wide-ranging applications to vari-

ous statistical settings, such as generalized linear models, and to many different fields, such as

biostatistics and economics. In fact, the methods discussed above can be applied to virtually

any problem that, in the frequentist setting, would be approached by generalized method

of moments or estimating equation techniques. To illustrate some of the possibilities, we

consider in this section two important problems: one in the context of count regression, and

the second in the setting of instrumental variable (IV) regression.
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4.1 Count regression: variable selection

Suppose that yi, i = 1, . . . , n arise from the negative binomial (NB) regression model

yi|β,xi ∼ NB

(
p

1− p
µi, p

)
, µi > 0, p ∈ (0, 1)

log(µi) = x′iβ

(4.1)

where µi is the size parameter, xi = (x1,i, x2,i, x3,i)
′, and β = (β1 = 1, β2 = 1, β3 = 0).

Thus, x3,i is a redundant regressor. Each explanatory variable xj,i is generated i.i.d. from a

N (.4, 1/9) distribution and p is set equal to 1/2. In this setting, suppose we wish to learn

about β under the moment conditions

EP [(yi − exp(β1x1,i + β2x2,i + β3x3,i))xi] = 0

EP

(yi − exp(x′iβ)√
exp(x′iβ)

)2

− 1

 = v.
(4.2)

The first type of moment restriction (one for each xj,i for j = 1, 2, 3) is derived from the fact

that the conditional expectation of yi is exp(x′iβ) and this identifies β. The second type of

restriction is suggested by a Poisson model (which is misspecified when the data arise from a

NB). More specifically, if v = 0 that moment condition asserts that the conditional variance

of yi is equal to the conditional mean.

Suppose that we are interested in determining if x3 is a redundant regressor and if the

conditional mean and variance are equal. To solve this problem, we can create the following

four models based on the grand model (4.2) with the following restrictions:

M1 : β1 and β2 are free parameters, β3 = 0 and v = 0.

M2 : β1, β2, β3 are free parameters and v = 0.

M3 : β1, β2 and v are free parameters, and β3 = 0.

M4 : β1 β2, β3 and v are free parameters.

(4.3)

As required, each model has the same moment restrictions. The different models arise from

the different restrictions on β3 and v. In this set-up, models M3 and M4 are the correctly

specified models butM3 has more overidentifying moment restrictions thanM4. We conduct
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our MCMC analysis and compute the marginal likelihoods of the four models by the Chib

(1995) method under the default student-t prior distribution on β given in (2.11). The

results are given in Table 3. The results show that the frequency of selecting M3 is 94%

for n = 250 and this percentage increases with sample size, in accordance with our theory.

In addition, neither model M1 nor M2 (which state equality of the conditional mean and

variance) is picked for any sample size.

Model M1 M2 M3 M4

n = 250 0.00 0.00 0.94 0.06
n = 500 0.00 0.00 0.95 0.05
n = 1000 0.00 0.00 0.96 0.04

Table 3: Frequency (%) of times each of the four models in (4.3) are selected by the marginal
likelihood criterion in 500 trials. Model choice with Negative Binomial DGP. Model M3,
defined by β3 = 0 and v free, is the true model. The other models are defined in the text.

In the online Appendix A we report a similar analysis where the data are generated from

a Poisson model. We emphasize that our analysis of these data, and the comparison across

models, was light in terms of assumptions. The Poisson and negative binomial distributions

are used to simply obtain a sample. These distributional forms are not featured in the

estimation or the model comparison. A reader of this paper wondered how a parametric

Poisson model would have performed for these data. Since the data was generated under

either a Poisson model or a model close to a Poisson model, the marginal likelihood of the

Poisson model (correctly) is higher than that of the moment model. But this performance

suffers dramatically if the data are generated from a count process that is quite different

from the Poisson. For instance, suppose that the data are generated under the assumption

that the first three moment conditions hold. We have developed a way of generating such

a sample which works as follows. We first generate a large population of count data from

an arbitrary count process (say yi = bexp{β1x1,i + β2x2,i + 20N (0, 1)}c, setting any negative

observations to zero and where bac denotes the largest integer less than or equal to a). We

then find the ETEL probabilities p∗i consistent with the given moment conditions. Finally, we

sample the population of observations according to these probabilities. The resulting sample

satisfies the moment conditions but has no connection to the Poisson or negative binomial

distributional forms. For such a design, in 500 replications, in the parametric Poisson models

(one with β3 = 0 and one with β3 free), the Poisson model with β3 = 0 is selected 42% when
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n = 250, 46% when n = 500, and 45% when n = 1000. Thus, the Poisson assumption is

not capable of selecting the correct case. In addition, when these two Poisson models are

compared along with the 4 moment models in (4.3), for which the marginal likelihoods are

computed with our method, M3 is decisively preferred over the Poisson models in terms of

marginal likelihood and the frequency of times it is selected is similar to that reported above

in Table 3.

4.2 IV Regression

Consider now the commonly occurring situation with observational data where one is

interested in learning about the causal effect parameter β in the model

y = α + xβ + wδ + ε, EP [ε] = 0

but the covariate x is correlated with the error, due to say unmeasured or uncontrolled

factors, apart from w, that are correlated with x and that reside in ε. Also suppose that one

has two valid instrumental variables z1 and z2 that (by definition) are correlated with x but

uncorrelated with ε. In this setting we can learn about θ := (α, β, δ) from the overidentified

moment restrictions

EP [(yi − α− xiβ − wiδ)] = 0 (4.4)

EP [(yi − α− xiβ − wiδ) z1i] = 0 (4.5)

EP [(yi − α− xiβ − wiδ) z2i] = 0 (4.6)

EP [(yi − α− xiβ − wiδ)wi] = 0, (i ≤ n) (4.7)

without having to model the distribution of ε or the model connecting z to x.

In order to demonstrate the performance of our Bayesian prior-posterior analysis in this

setting, we generate data on (yi, xi, z1i, z2i) from a design that incorporates a skewed marginal

distribution of ε and substantial correlation between x and ε. In our DGP we assume that y =

1+.5x+.7w+ε, x = z1+z2+w+u, and generate zj from N (.5, 1) and w from Uniform(0, 1).

The errors (ε, u) are generated from a Gaussian copula whose covariance matrix has 1 on

the diagonal, and .7 on the off-diagonal, such that the ε marginal distribution is the skewed
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bivariate mixture 0.5N (.5, .52)+0.5N (−.5, 1.1182) and the umarginal distribution isN (0, 1).

We generate n = 250 and n = 2000 observations from this design and use moment conditions

(4.4)-(4.7) and our default student-t prior given in (2.11) to learn about θ. The results shown

in Table 4 and Figure 1 demonstrate clearly the ability of our method to concentrate on the

true values of the parameters, under minimal assumptions.

mean sd median lower upper ineff
n = 250

α 1.26 0.11 1.26 1.04 1.48 1.26
β 0.55 0.03 0.55 0.48 0.61 1.41
δ 0.28 0.17 0.28 -0.06 0.60 1.27

n = 2000
α 1.01 0.05 1.01 0.92 1.10 1.30
β 0.51 0.02 0.51 0.48 0.54 1.33
δ 0.66 0.07 0.66 0.52 0.81 1.38

Table 4: Posterior summary for two simulated sample sizes from IV regression model with skewed
error. The true value of α is 1, of β is .5 and of δ is .7. The summaries are based on 10, 000 MCMC
draws beyond a burn-in of 1000. The M-H acceptance rate is around 90% in both cases.

n=250

n=2000
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Posterior densities by sample size

Figure 1: Posterior densities of β in the IV regression with skewed error. Posterior densities are
based on 10,000 draws beyond a burn-in of 1000. The M-H acceptance rate is about 90% for each
sample size.

Now suppose that we are unsure that z2 is an appropriate instrument. We can address

this concern by estimating a new model M2 in which the moment condition (4.6) is not
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active. The marginal likelihood of this model can be compared with the marginal likelihood

of the previous model M1. The results show that for n = 250, the log-marginal likelihood of

M1 is −1395.807 and that of M2 is −1398.092, while for n = 2000, the corresponding log-

marginal likelihoods are −15217.78 and −15222.65, respectively, thus correctly indicating

for both sample sizes that z2 is an appropriate instrument.

5 Conclusion

In this paper we have developed a fully Bayesian framework for estimation and model

comparisons in statistical models that are defined by moment restrictions. The Bayesian

analysis of such models has always been viewed as a challenge because traditional Bayesian

semiparametric methods, such as those based on Dirichlet process mixtures and variants

thereof, are not suitable for such models. What we have shown in this paper is that the

Exponentially Tilted Empirical Likelihood setting is an immensely useful organizing frame-

work within which a fully Bayesian treatment of such models can be developed. We have

established a number of new, powerful results surrounding the Bayesian ETEL framework

including the treatment of models that are possibly misspecified. We show how the mo-

ment conditions can be reexpressed in terms of additional nuisance parameters and that the

Bayesian ETEL posterior distribution satisfies a Bernstein-von Mises theorem. We have also

developed a framework for comparing moment condition models based on marginal likeli-

hoods and Bayes factors and provided a suitable large sample theory for model selection

consistency. Our results show that the marginal likelihood favors the model with the mini-

mum number of parameters and the maximum number of valid moment restrictions. When

the models are misspecified, the marginal likelihood-based selection procedure selects the

model that is closer to the (unknown) true data generating process in terms of the Kullback-

Leibler divergence. The ideas and results illumined in this paper now provide the means

for analyzing a whole array of models from the Bayesian viewpoint. This broadening of the

scope of Bayesian techniques to previously intractable problems is likely to have far-reaching

practical consequences.
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Supplementary Material: the supplementary material in the online Appendix contains

further examples, assumptions and the technical proofs of the results in the paper.

Appendix

In this Appendix we provide the proof of Theorems 3.1 and 3.2. The proofs of all the

other results are in the online Appendix.

Notation: Let λ̂(ψ) := arg minλ∈Rd
1
n

∑n
i=1

[
exp{λ′gA(xi,ψ)}

]
. We recall the Schen-

nach (2007) ETEL estimator of ψ, denoted by ψ̂ := (θ̂, v̂):

ψ̂ := arg max
ψ∈Ψ

1

n

n∑
i=1

[
λ̂(ψ)′gA(xi,ψ)− log

1

n

n∑
j=1

exp{λ̂(ψ)′gA(xj,ψ)}

]
. (C.1)

The following notation is used hereafter. The ETEL estimator of ψ` in model M` is:

ψ̂
`

:= arg max
ψ`∈Ψ`

1

n

n∑
i=1

[
λ̂(ψ`)′gA(xi,ψ

`)− log
1

n

n∑
j=1

exp{λ̂(ψ`)′gA(xj,ψ
`)}

]
(D.1)

where λ̂(ψ`) = arg minλ∈Rd
1
n

∑n
i=1

[
exp{λ′gA(xi,ψ

`)}
]
. Denote ĝA(ψ`) := 1

n

∑n
i=1 g

A(xi,ψ
`),

ĝA` := ĝA(ψ`), L̂(ψ`) := exp{λ̂(ψ`)′ĝA(ψ`)}
[
n−1

∑n
i=1 exp{λ̂(ψ`)′gA(xi,ψ

`)}
]−1

and L(ψ`) =

exp{λ◦(ψ`)′EP [gA(x,ψ`)]}
(
EP
[
exp{λ◦(ψ`)′gA(x,ψ`)}

])−1. Moreover, we use the notation

Σ` =
(
Γ′`∆

−1
` Γ`

)−1 where Γ` := EP
[

∂
∂ψ`′g

A(X,ψ`
∗)
]
and ∆` := EP [gA(X,ψ`

∗)g
A(X,ψ`

∗)
′].

In the proofs, we omit measurability issues which can be dealt with in the usual manner by

replacing probabilities with outer probabilities.

Proof of Theorem 3.1: By (3.5) and Lemmas D.1 and D.2 in the online Appendix we

obtain

P

(
max
6̀=j

logm(x1:n;M`) < logm(x1:n;Mj)

)
= P

(
max
`6=j

[
− n

2
ĝA
′

` ∆−1ĝA` + log π(ψ̂
`
|M`)

− (p` + dv`)

2
(log n− log(2π)) +

1

2
log |Σ`|

]
+
n

2
ĝA
′

j ∆−1ĝAj + op(1)

< log π(ψ̂
j
|Mj)−

(pj + dvj)

2
(log n− log(2π)) +

1

2
log |Σj|

)
. (D.2)

Remark that nĝA
′

j ∆−1ĝAj
d→ χ2

d−(pj+dvj ), ∀j, so that nĝA
′

j ∆−1ĝAj = Op(1). Suppose first that
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(p` + dv` > pj + dvj), ∀` 6= j. Since −nĝA
′

` ∆−1ĝA` < 0 for every `, we lower bound (D.2) as

P

(
max
6̀=j

logm(x1:n;M`) < logm(x1:n;Mj)

)
≥ P

(n
2
ĝA
′

j ∆−1ĝAj + op(1)

< log n
[min 6̀=j(p` + dv`)− pj − dvj

2
−

min`6=j(p` + dv`)− pj − dvj)
2 log n

log(2π)

− log[max 6̀=j π(ψ̂
`
|M`)/π(ψ̂

j
|Mj)]

log n
− 1

2 log n

(
max
`6=j

log |Σ`| − log |Σj|
)])

= P
( n

2
ĝA
′

j ∆−1ĝAj + op(1)︸ ︷︷ ︸
=:In

< log n
[min` 6=j(p` + dv`)− pj − dvj

2
+Op((log n)−1)

]
︸ ︷︷ ︸

=:IIn

)
. (D.3)

Because In = Op(1) (and is asymptotically positive) and IIn is strictly positive as n→∞

(since (p` + dv`) > (pj + dvj), ∀` 6= j) and converges to +∞, then the probability converges

to 1. This proves one direction of the statement.

To prove the second direction of the statement, suppose that limn→∞ P (max`6=j logm(x1:n;M`) <

logm(x1:n;Mj)) = 1 and consider the following upper bound (which follows from (D.2) and

the fact that nĝA
′

j ∆−1ĝAj > 0, ∀n):

P

(
max
6̀=j

logm(x1:n;M`) < logm(x1:n;Mj)

)
≤ P (logm(x1:n;M`) < logm(x1:n;Mj)) , ∀` 6= j

≤ P
(
− n

2
ĝA
′

` ∆−1ĝA` +op(1)+log n
[(pj + dvj)− (p` + dv`)

2
+Op

(
1

log n

)]
< 0
)
, ∀` 6= j.

(D.4)

Because the probability in the first line of (D.4) converges to 1 as n→∞ then, necessarily,

the probability in the last line of (D.4) converges to 1 which is possible only if (pj + dvj) <

(p` + dv`) because log n
[

(pj+dvj )−(p`+dv` )

2

]
is the dominating term since −n

2
ĝA
′

` ∆−1ĝA` < 0

and it remains bounded as n → ∞. Since the first inequality in (D.4) holds ∀` 6= j then

convergence to 1 of the probability in the last line of (D.4) is possible only if (pj + dvj) <

(p` + dv`), ∀` 6= j.

�

Proof of Theorem 3.2: We can write log p(x1:n|ψ`;M`) = −n log n + n log L̂(ψ`).
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Then, we have:

P

(
logm(x1:n;Mj) > max

6̀=j
logm(x1:n;M`)

)
= P

(
n log L̂(ψj

◦)+log π(ψj
◦|Mj)−log π(ψj

◦|x1:n,Mj)

> max
`6=j

[n log L̂(ψ`
◦) + log π(ψ`

◦|M`)− log π(ψ`
◦|x1:n,M`)]

)
= P

(
n logL(ψj

◦) + n log
L̂(ψj

◦)

L(ψj
◦)

+ Bj > max
` 6=j

[
n logL(ψ`

◦) + B` + n log
L̂(ψ`

◦)

L(ψ`
◦)

])
(D.5)

where ∀`, B` := log π(ψ`
◦|M`) − log π(ψ`

◦|x1:n,M`) and B` = Op(1) under the assump-

tions of Theorem 2.2. By definition of dQ∗(ψ) in Section 2.3 we have that: logL(ψ`
◦) =

EP [log dQ∗(ψ`
◦)/dP ] = −EP [log dP/dQ∗(ψ`

◦)] = −K(P ||Q∗(ψ`
◦)). Remark that EP [log(dP/dQ∗(ψ2

◦))] >

EP [log(dP/dQ∗(ψ1
◦))] means that the KL divergence between P and Q∗(ψ`

◦), is smaller for

model M1 than for model M2, where Q∗(ψ`
◦) minimizes the KL divergence between Q ∈ Pψ`

◦

and P for ` ∈ {1, 2} (notice the inversion of the two probabilities).

First, suppose that min` 6=j EP
[
log
(
dP/dQ∗(ψ`

◦)
)]
> EP

[
log
(
dP/dQ∗(ψj

◦)
)]
. By (D.5):

P

(
logm(x1:n;Mj) > max

` 6=j
logm(x1:n;M`)

)
≥

P

log
L̂(ψj

◦)

L(ψj
◦)
−max

6̀=j
log

L̂(ψ`
◦)

L(ψ`
◦)

+
1

n
(Bj −max

` 6=j
B`) > max

` 6=j
logL(ψ`

◦)− logL(ψj
◦)︸ ︷︷ ︸

=:In

 . (D.6)

This probability converges to 1 because In = K(P ||Q∗(ψj
◦))−min`6=jK(P ||Q∗(ψ`

◦)) < 0 by

assumption, and
[
log L̂(ψ`)− logL(ψ`)

]
p→ 0, for every ψ` ∈ Ψ` and every ` ∈ {1, 2} by

Lemma D.3 in the online Appendix.

To prove the second direction of the statement, suppose that limn→∞ P (logm(x1:n;Mj) >

max 6̀=j logm(x1:n;M`)) = 1. By (D.5) it holds, ∀` 6= j

P

(
logm(x1:n;Mj) > max

` 6=j
logm(x1:n;M`)

)
≤

P
(

log
L̂(ψj

◦)

L(ψj
◦)
− log

L̂(ψ`
◦)

L(ψ`
◦)

+
1

n
(Bj − B`) > log

L(ψ`
◦)

L(ψj
◦)

)
. (D.7)

Convergence to 1 of the left hand side implies convergence to 1 of the right hand side which

is possible only if logL(ψ`
◦)− logL(ψj

◦) < 0. Since this is true for every model `, then this
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implies that K(P ||Q∗(ψj
◦)) < min 6̀=jK(P ||Q∗(ψ`

◦)) which concludes the proof.

�
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A Examples

Example 2 (Misspecified model and pseudo-true value). Let us consider the model yi = α+

ei, i = 1, . . . , n, with ei independently drawn from the skewed distribution P given in (2.13).
We consider the following two moment conditions EP [yi − α] = 0 and EP [(yi − α)3] = 0.
This situation is different from the one illustrated in Example 1 in the paper because there
are no covariates and the augmented parameter v is (incorrectly) forced to be zero. In turn,
α has to satisfy both the moment restrictions, which is impossible under P . Instead, for each
α the ETEL function is defined by the probability measure Q∗(α) which is the closest to the
true generating process P in terms of KL divergence among the probability measures that
are consistent with the given moment restrictions for a given α. In Figure 2 (left panel), we
present EP [log(dQ∗(α)/dP )] which is equal to −K(P ||Q∗(α)). The value that maximizes this
function is different from the true value (α = 0) and it is peaked around −0.056. This value
is the pseudo-true value. In the right panel of Figure 2, we present the BETEL posterior
distribution of α for five different sample sizes. The BETEL posterior distribution shrinks
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and moves toward the pseudo-true value, in conformity with our theoretical result.
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Figure 2: Posterior distributions in Example 2 under misspecification. Left panel presents the
function α 7→ EP [log(dQ∗(α)/dP )] where Q∗(α) := arginfQ∈PψK(Q||P ) with ψ := (α, 0). For each
α, we approximate this function based on the dual representation in (2.16) – which is valid under
Assumption 3 – using five million simulation draws from P . In the right panel, we present the
BETEL posterior distribution of the location parameter α for n = 250, 500, 1000, 2000, 5000 where
n is the number of observations. The prior distribution for α is student-t with mean 0 and dispersion
5. Vertical dashed lines are at the pseudo-true parameter value, approximately equal to −0.056.
Posterior densities are based on 10,000 draws beyond a burn-in of 1000. The M-H acceptance rate
is about 90% for each sample size.

Example 3 (Model selection when all models are correctly specified). We suppose that for
every i = 1, . . . , n, yi = α + βzi + ei, where zi ∼ N (0.5, 1) and ei ∼ N (0, 1) indepen-
dently of zi. Let θ := (α, β), ei(θ) := (yi − α − βzi) and the true value of θ be (0, 1). We
compare the following models. Model 1: EP [(ei(θ), ei(θ)zi, ei(θ)

3, ei(θ)
2 − 1)′] = 0, Model 2:

EP [(ei(θ), ei(θ)zi, ei(θ)
2 − 1)′] = 0 and Model 3: EP [(ei(θ), ei(θ)

2 − 1)′] = 0 which, reformu-
lated in terms of an encompassing grand model, become respectively:

M1 : EP [ei(θ)] = 0, EP [ei(θ)zi] = 0, EP [ei(θ)
3] = 0, EP [ei(θ)

2 − 1] = 0

M2 : EP [ei(θ)] = 0, EP [ei(θ)zi] = 0, EP [ei(θ)
3] = v1, EP [ei(θ)

2 − 1] = 0,

M3 : EP [ei(θ)] = 0, EP [ei(θ)zi] = v2, EP [ei(θ)
3] = v1, EP [ei(θ)

2 − 1] = 0.

(A.1)

with ψ1 = θ, ψ2 = (θ, v1) and ψ3 = (θ, v1, v2). Note that the last two moment restrictions
(which concern the third and second moments) serve as extra information to infer the pa-
rameter θ, when they are active. Under the standard normal error distribution, all the three
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models are correctly specified: M1 has four active moment restrictions while M2 and M3 have
three and two active moment restrictions, respectively.

In Table 5, we report the percentage of times the marginal likelihood selects each of these
models in 500 trials, for different sample sizes. Model M1, the model with the larger number
of valid restrictions, is selected 99% of times by sample size of n = 500. The results are
virtually indistinguishable for the training sample prior (based on 50 prior samples). Under
both priors the proportion of correct selection tends to one.

Default prior Training sample prior
Model M1 M2 M3 M1 M2 M3

n = 250 97.8 1.6 0.6 98.0 1.6 0.4
n = 500 99.0 0.8 0.2 99.0 0.8 0.2
n = 1000 99.2 0.6 0.2 99.2 0.6 0.0
n = 2000 99.2 0.8 0.0 99.2 0.8 0.0

Table 5: Model selection when all models are correctly specified. Frequency (%) of times each of
the three models in Example 3 are selected by the marginal likelihood criterion in 500 trials, by
sample size, for two different prior distributions.

Example (Count regression: variable selection (continued)). Consider the case where the
data are drawn under the Poisson assumption (this information is, of course, not used in
the estimation). Specifically, suppose we generate n realizations of {yi, xi} from the Poisson
model

yi|β, xi ∼ Poisson(µi), i = 1, . . . , n

log(µi) = x′iβ.
(A.2)

where β = (β1, β2, β3)′ and xi = (x1,i, x2,i, x3,i)
′, with β1 = 1, β2 = 1, β3 = 0. Thus,

x3,i is a redundant regressor. Each explanatory variable xj,i is generated i.i.d. from normal
distributions with mean .4 and standard deviation 1/3. Given these data, our goal is to
evaluate the finite-sample performance of our marginal likelihood criterion in picking out the
correct model. We conduct our MCMC analysis and compute the marginal likelihoods of the
four models by the Chib (1995) method under the default student-t prior distribution on β

given in (2.11). The results, in Table 6, give the percentage of times in 500 replications that
the marginal likelihood criterion picks each model for three different sample sizes. As can be
seen, the model with the largest number of overidentifying moment restrictions M1 is selected
by the marginal likelihood criterion with frequency close to one even when n = 250.
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Model M1 M2 M3 M4

n = 250 0.99 0.01 0.01 0.00
n = 500 0.99 0.00 0.01 0.00
n = 1000 0.99 0.00 0.00 0.00

Table 6: Frequency (%) of times each of the four models in (4.3) are selected by the marginal
likelihood criterion in 500 trials. The DGP is the Poisson model given in (A.2).

B Assumptions

In this section we state the assumptions that are used to prove the theorems in the
paper. For completeness we also report Assumptions 1 – 4 that were already stated in the
paper. We start by stating the assumptions that are used in Theorem 2.1 and then the
other assumptions relevant for misspecification. As a consequence the numbering is not in
the order.

Assumption 1. Model (2.2) is such that ψ∗ ∈ Ψ is the unique solution to EP [gA(X,ψ)] = 0.

Assumption 2. (a) π is a continuous probability measure that admits a density with respect
to the Lebesgue measure; (b) π is positive on a neighborhood of ψ∗.

The following two assumptions relate to the smoothness of the function gA(x, ψ), its
moments, and the parameter space.

Assumption 5. (a) Xi, i = 1, . . . , n are i.i.d. random variables that take values in (X ,BX )

with probability distribution P , where X ⊆ Rdx; (b) for every 0 ≤ dv ≤ d − p, ψ ∈ Ψ ⊂
Rp×Rdv where Θ and V are compact and connected and Ψ := Θ×V; (c) g(x, θ) is continuous
at each θ ∈ Θ with probability one; (d) EP [supψ∈Ψ ‖gA(X,ψ)‖α] <∞ for some α > 2; (e) ∆

is nonsingular.

Assumption 6. (a) ψ∗ ∈ int(Ψ); (b) gA(x, ψ) is continuously differentiable in a neighbor-
hood U of ψ∗ and EP [supψ∈U ‖∂gA(X,ψ)/∂ψ′‖F ] <∞; (c) rank(Γ) = p.

Assumptions 5 and 6 are the same as the assumptions of Newey and Smith (2004, Theorem
3.2) and Schennach (2007, Theorem 3).

We now consider misspecified models.

Assumption 3. For a fixed ψ ∈ Ψ, there exists Q ∈ Pψ such that Q is mutually absolutely
continuous with respect to P , where Pψ is defined in Definition 2.1.

Assumption 4. The prior distribution π is positive on a neighborhood of ψ◦ where ψ◦ is as
defined in (2.16).
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In addition to these assumptions, to prove Theorem 2.2 we also use Assumptions 5 (a)-
(d) and 6 (b) in the previous section. Finally, in order to guarantee n−1/2-convergence of λ̂
towards λ◦ and n−1/2-contraction of the posterior distribution of ψ around ψ◦, we introduce
Assumptions 7 and 8. These assumptions require the pseudo-true values λ◦ and ψ◦ to be
in the interior of a compact parameter space, and the function gA(x, ψ) to be sufficiently
smooth and uniformly bounded as a function of ψ. These assumptions are not new in the
literature and are also required by Schennach (2007, Theorem 10) (adapted to account for
the augmented model).

Assumption 7. (a) There exists a functionM(·) such that EP [M(X)] <∞ and ‖gA(x, ψ)‖ ≤
M(x) for all ψ ∈ Ψ; (b) λ◦(ψ) ∈ int(Λ(ψ)) where Λ(ψ) is a compact set and λ◦ is as defined
in (2.16); (c) it holds EP

[
supψ∈Ψ,λ∈Λ(ψ) e

{λ′gA(X,ψ)}
]
<∞.

Assumption 8. Let ψ◦ be as defined in (2.16). (a) The pseudo-true value ψ◦ ∈ int(Ψ) is
the unique maximizer of

λ◦(ψ)′EP [gA(X,ψ)]− logEP [exp{λ◦(ψ)′gA(X,ψ)}],

where Ψ is compact; (b) Sjl(xi, ψ) := ∂2gA(xi, ψ)/∂ψj∂ψl is continuous in ψ for ψ ∈ U◦,
where U◦ denotes a ball centred at ψ◦ with radius n−1/2; (c) there exists b(xi) satisfying
EP
[
supψ∈U◦ supλ∈Λ(ψ) exp{κ1λ

′gA(X,ψ)}b(X)κ2
]
< ∞ for κ1 = 0, 1, 2 and κ2 = 0, 1, 2, 3, 4

such that ‖gA(xi, ψ)‖ < b(xi), ‖∂gA(xi, ψ)/∂ψ′‖F ≤ b(xi) and ‖Sjl(xi, ψ)‖ ≤ b(xi) for j, l =

1, . . . , p for any xi ∈ (X ,BX ) and for all ψ ∈ U◦.

C Proofs for Sections 2.2 and 2.3

In this appendix we prove Theorems 2.1 and 2.2 and Lemma 2.1. It is useful to introduce
some notation that will be used hereafter. The estimator ψ̂ := (θ̂, v̂) denotes Schennach
(2007)’ETEL estimator of ψ:

ψ̂ := arg max
ψ∈Ψ

1

n

n∑
i=1

[
λ̂(ψ)′gA(xi, ψ)− log

1

n

n∑
j=1

exp{λ̂(ψ)′gA(xj, ψ)}

]
(C.1)

where λ̂(ψ) := arg minλ∈Rd
1
n

∑n
i=1

[
exp{λ′gA(xi, ψ)}

]
. The log-likelihood ratio is:

ln,ψ(x)− ln,ψ◦(x) = log
eλ̂(ψ)′gA(x,ψ)

1
n

∑n
j=1

[
eλ̂(ψ)′gA(xj ,ψ)

] − log
eλ̂(ψ◦)′gA(x,ψ◦)

1
n

∑n
j=1

[
eλ̂(ψ◦)′gA(xj ,ψ◦)

] . (C.2)
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C.1 Proof of Theorem 2.1

Denote by h :=
√
n(ψ − ψ∗) the local parameter and Vψ∗ := Γ′∆−1Γ. We denote by πh

and πh(·|x1:n) the prior and posterior distribution, respectively, of the local parameter h.
Therefore, πh(h) = n−dψ/2π(ψ∗ + h/

√
n), where dψ := (p+ dv), and

πh(h|x1:n) =
π(ψ∗ + h/

√
n) exp{log p(x1:n|ψ∗+h/

√
n)

p(x1:n|ψ∗) }∫
π(ψ∗ + h̃/

√
n) exp{log p(x1:n|ψ∗+h̃/

√
n)

p(x1:n|ψ∗) }dh̃

=: C−1
n π(ψ∗ + h/

√
n) exp

{
log

p(x1:n|ψ∗ + h/
√
n)

p(x1:n|ψ∗)

}
and we need to show (2.15) which is equivalent to∫ ∣∣∣∣C−1

n π(ψ∗ + h/
√
n) exp

{
log

p(x1:n|ψ∗ + h/
√
n)

p(x1:n|ψ∗)

}
− (2π)−dψ/2|Vψ∗|1/2e{−h

′Vψ∗h/2}
∣∣∣∣ dh p→ 0.

(C.3)
Remark that∫ ∣∣∣∣C−1

n π(ψ∗ + h/
√
n) exp

{
log

p(x1:n|ψ∗ + h/
√
n)

p(x1:n|ψ∗)

}
− (2π)−dψ/2|Vψ∗|1/2e{−h

′Vψ∗h/2}
∣∣∣∣ dh

≤ C−1
n

∫ ∣∣∣∣π(ψ∗ + h/
√
n) exp

{
log

p(x1:n|ψ∗ + h/
√
n)

p(x1:n|ψ∗)

}
− π(ψ∗) exp{−h′Vψ∗h/2}

∣∣∣∣ dh
+ C−1

n

∫ ∣∣π(ψ∗) exp{−h′Vψ∗h/2} − Cn(2π)−dψ/2|Vψ∗|1/2 exp{−h′Vψ∗h/2}
∣∣ dh

=: I1 + I2. (C.4)

Term I1
p→ 0 by Lemma C.1 below. Because Lemma C.1 implies that Cn

p→ π(ψ∗)(2π)dψ/2|Vψ∗|−1/2,
then term I2

p→ 0 and this concludes the proof of the theorem.

�

Lemma C.1. Under Assumptions 1, 2, 5, 6 and (2.14),∫ ∣∣∣∣π(ψ∗ + h/
√
n) exp

{
log

p(x1:n|ψ∗ + h/
√
n)

p(x1:n|ψ∗)

}
− π(ψ∗) exp{−h′Vψ∗h/2}

∣∣∣∣ dh p→ 0 (C.5)
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Proof. Given any δ, c > 0 we break the domain of integration into three regions: (I) A1 :=

{h; ‖h‖ < c log
√
n}; (II) A2 := {h; c log

√
n < ‖h‖ < δ

√
n}; (III) A3 := {h; ‖h‖ > δ

√
n}.

We begin with A3:∫
A3

∣∣∣∣π(ψ∗ + h/
√
n) exp{log

p(x1:n|ψ∗ + h/
√
n)

p(x1:n|ψ∗)
} − π(ψ∗) exp{−h′Vψ∗h/2}

∣∣∣∣ dh
≤

∫
A3

π(ψ∗ + h/
√
n)e{

∑n
i=1(ln,ψ∗+h/

√
n(xi)−ln,ψ∗ (xi))}dh+

∫
A3

π(ψ∗)e
{−h′Vψ∗h/2}dh.

The first integral goes to zero by (2.14). The second integral goes to zero by the properties
of the tails of a normal distribution. Let us consider A1. By (C.9) and (C.7) in Lemma C.2
we have, for a generic constant C:∫

A1

∣∣∣∣π(ψ∗ + h/
√
n) exp

{
log

p(x1:n|ψ∗ + h/
√
n)

p(x1:n|ψ∗)

}
− π(ψ∗) exp{−h′Vψ∗h/2}

∣∣∣∣ dh
≤ eCn

−1/2 log
√
n

∫
A1

π(ψ∗ + h/
√
n)
∣∣∣e−h′Vψ∗h/2+Cn−1/2‖h‖2 − e−h′Vψ∗h/2

∣∣∣ dh+ op(log
√
n/
√
n)

+

∫
A1

∣∣π(ψ∗ + h/
√
n)− π(ψ∗)

∣∣ e−h′Vψ∗h/2dh.
Because π is continuous at ψ∗ by Assumption 2, the second integral goes to zero. Because∣∣∣eCn−1/2‖h‖2 − 1

∣∣∣ ≤ eCn
−1/2‖h‖2

∣∣Cn−1/2‖h‖2
∣∣ for a generic constant C, the first integral is

≤ sup
h∈A1

π(ψ∗ + h/
√
n)

∫
A1

e−h
′Vψ∗h/2

∣∣∣eCn−1/2‖h‖2 − 1
∣∣∣

≤ sup
h∈A1

π(ψ∗ + h/
√
n) sup

h∈A1

eCn
−1/2‖h‖2 ∣∣Cn−1/2‖h‖2

∣∣∫
A1

e−h
′Vψ∗h/2dh = op(1).

Next, consider the last region of integration and use (C.8) and (C.9):∫
A2

∣∣∣∣π(ψ∗ + h/
√
n) exp

{
log

p(x1:n|ψ∗ + h/
√
n)

p(x1:n|ψ∗)

}
− π(ψ∗) exp{−h′Vψ∗h/2}

∣∣∣∣ dh
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≤ eCn
−1/2√n

∫
A2

π(ψ∗+h/
√
n)e−h

′Vψ∗h/2+h′( 1
n

∑n
i=1 l̈n,ψt (xi)−Vψ∗)h/2dh+

∫
A2

π(ψ∗)e
−h′Vψ∗h/2dh.

(C.6)

The second integral can be upper bounded as (for a generic constant C > 0):∫
A2

π(ψ∗)e
−h′Vψ∗h/2dh ≤ 2π(ψ∗)e

−c log(
√
n)ρmin(Vψ∗ )/2(δ

√
n− c log

√
n) ≤ Cπ(ψ∗)

√
n

ncρmin(Vψ∗ )/4

so that by choosing c > 2ρmin, the integral goes to zero because, under Assumptions 5 (e)
and 6 (c), ρmin(Vψ∗) is strictly positive, where ρmin(Vψ∗) denotes the minimum eigenvalue
of the matrix Vψ∗ . To control the first integral in (C.6), there exists a N such that for
all n ≥ N : P

(
−h′Vψ∗h/2 + h′

(
1
n

∑n
i=1 l̈n,ψt(xi)− Vψ∗

)
h/2 < −h′Vψ∗h/4 for all h ∈ A2

)
>

1− ε. Therefore, with probability larger than 1− ε,∫
A2

π(ψ∗+ h̃/
√
n)e−h

′Vψ∗h/2+h′( 1
n

∑n
i=1 l̈n,ψt (xi)−Vψ∗)h/2dh ≤ sup

h∈A2

π(ψ∗+h/
√
n)

∫
A2

e−h
′Vψ∗h/4dh

which converges to zero as n→∞. Finally, by putting these three results together we show
(C.5).

�

Lemma C.2. Let Assumptions 1, 2, 5 and 6 hold and denote h :=
√
n(ψ − ψ∗) and Vψ∗ :=

Γ′∆−1Γ. Then,

log
p(x1:n|ψ∗ + h/

√
n)

p(x1:n|ψ∗)
= −1

2
h′Vψ∗h+Op((‖h‖+ ‖h‖2)n−1/2). (C.7)

Proof. Denote dψ := (p + dv), τ(λ̂, ψ, x) := eλ̂(ψ)′gA(x,ψ) and τn(λ̂, ψ) := 1
n

∑n
i=1 τ(λ̂, ψ, xi).

Moreover, let GA(x, ψ∗) := ∂gA(x, ψ)/∂ψ′
∣∣
ψ=ψ∗

be a matrix of dimension d×dψ. A first order
Taylor expansion of h 7→ log p(x1:n|ψ∗+h/

√
n) around h = 0, with Lagrange remainder, gives:

log
p(x1:n|ψ∗ + h/

√
n)

p(x1:n|ψ∗)
=

1√
n

n∑
i=1

l̇n,ψ∗(xi)
′h+

1

2n

n∑
i=1

h′l̈n,ψt(xi)h (C.8)

where l̇n,ψ∗(x) := ∂ln,ψ(x)/∂ψ|ψ=ψ∗
, l̈n,ψt(x) := ∂2ln,ψ(x)/(∂ψ∂ψ′)|ψ=ψt

and ψt := ψ∗ +
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th/
√
n, t ∈ [0, 1]dψ . Simple computations give:

1√
n

n∑
i=1

l̇n,ψ∗(xi)
′h =

1√
n

n∑
i=1

(
1− τ(λ̂, ψ∗, xi)

τn(λ̂, ψ∗)

)(
λ̂(ψ∗)

′GA(xi, ψ∗) + gA(xi, ψ∗)
′dλ̂(ψ∗)

dψ′

)
h

= Op(n
−1/2‖h‖) (C.9)

since under Assumption 5, λ̂(ψ∗) = Op(n
−1/2) by Newey and Smith (2004, Theorem 3.1)

and
∣∣∣1− τ(λ̂,ψ,xi)

τn(λ̂,ψ)

∣∣∣ = Op(n
−1/2) by continuity of ψ 7→ λ̂(ψ) (due to the Birge’s maximum

theorem and strict convexity of λ 7→ 1
n

∑
i=1 exp{λ′gA(xi, ψ)}). Denote A1(λ̂, ψ, xi) :=(

λ̂(ψ)′GA(xi, ψ) + gA(xi, ψ)′ dλ̂(ψ)
dψ′

)
. Then,

1

n

n∑
i=1

h′l̈n,ψt(xi)h =
h′

n

n∑
i=1

(
1− τ(λ̂, ψt, xi)

τn(λ̂, ψt)

)( d∑
j=1

λ̂j(ψt)
∂2gAj (xi, ψt)

∂ψ∂ψ′

+
dλ̂(ψt)

′

dψ
GA(xi, ψt) +GA(xi, ψt)

′dλ̂(ψt)

dψ′
+

d∑
j=1

gAj (xi, ψt)
d2λ̂j(ψt)

dψdψ′

)
h

−h′ 1
n

n∑
i=1

(
τ(λ̂, ψt, xi)

τn(λ̂, ψt)
A1(λ̂, ψt, xi)

′ − τ(λ̂, ψt, xi)

τ 2
n(λ̂, ψt)

1

n

n∑
j=1

τ(λ̂, ψt, xj)A1(λ̂, ψt, xj)
′

)
A1(λ̂, ψt, xi)h

= −h′ 1
n

n∑
i=1

τ(λ̂, ψt, xi)

τn(λ̂, ψt)

dλ̂(ψt)
′

dψ
gA(xi, ψt)g

A(xi, ψt)
′dλ̂(ψt)

dψ′
h+Op(‖h‖2n−1/2)

= −h′Γ′∆−1Γh+Op(‖h‖2n−1/2) (C.10)

because: (i) under Assumption 5, λ̂(ψ∗) = Op(n
−1/2) by Newey and Smith (2004, Theo-

rem 3.1) so that sup
t∈[0,1]

dψ

∣∣∣1− τ(λ̂,ψt,xi)

τn(λ̂,ψt)

∣∣∣ = Op(n
−1/2) by continuity of ψ 7→ λ̂(ψ) (due to

the Birge’s maximum theorem and strict convexity of λ 7→ 1
n

∑
i=1 exp{λ′gA(xi, ψ)}); (ii)

1
n

∑n
j=1 τ(λ̂, ψt, xj)g

A(xj, ψt) = Op(n
−1/2) by the results in (i) and Newey and Smith (2004,

Lemma A.3); (iii) dλ̂(ψt)
dψ′

= −∆−1Γ +Op(n
−1/2) (by Assumptions 5 (b) - (d) and 6 (b) - (c)).

By replacing (C.9) and (C.10) in (C.8) we get the result of the lemma.

�

C.2 Proof of Theorem 2.2.

The main steps of this proof proceed as in the proof of Van der Vaart (1998, Theorem 10.1)
and Kleijn and van der Vaart (2012, Theorem 2.1) while the proofs of the technical theorems
and lemmas that we use all along this proof are new. Let us consider a reparametrization of
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the model centred around the pseudo-true value ψ◦ and define a local parameter h =
√
n(ψ−

ψ◦). Denote by πh and πh(·|x1:n) the prior and posterior distribution of h, respectively.
Denote by Φn the normal distribution N∆n,ψ◦ ,V

−1
ψ◦

and by φn its Lebesgue density. For a
compact subset K ⊂ Rp such that πh(h ∈ K|x1:n) > 0 define, for any Borel set B ⊆ Ψ,

πhK(B|x1:n) :=
πh(K ∩B|x1:n)

πh(K|x1:n)

and let ΦK
n be the Φn distribution conditional on K. The proof consists of two steps. In

the first step we show that the Total Variation (TV) norm of πhK(·|x1:n) − ΦK
n converges

to zero in probability. In the second step we use this result to show that the TV norm of
πh(·|x1:n)− Φn converges to zero in probability.

Let Assumption 8 (a) hold. For every open neighborhood U ⊂ Ψ of ψ◦ and a compact
subset K ⊂ Rp, there exists an N such that for every n ≥ N :

ψ◦ +K
1√
n
⊂ U . (C.11)

Define the function fn : K ×K → R as, ∀k1, k2 ∈ K:

fn(k1, k2) :=

(
1− φn(k2)sn(k1)πh(k1)

φn(k1)sn(k2)πh(k2)

)
+

where (a)+ = max(a, 0), here πh denotes the Lebesgue density of the prior πh for h and
sn(h) := p(x1:n|ψ◦+h/

√
n)/p(x1:n|ψ◦). The function fn is well defined for n sufficiently large

because of (C.11) and Assumption 8 (a). Remark that by (C.11) and since the prior for ψ
puts enough mass on U , then πh puts enough mass on K and as n→∞: πh(k1)/πh(k2)→ 1.
Because of this and by the stochastic LAN expansion (C.16) in Theorem C.1 below:

log
φn(k2)sn(k1)πh(k1)

φn(k1)sn(k2)πh(k2)
= −1

2
(k2−∆n,ψ◦)

′Vψ◦(k2−∆n,ψ◦) +
1

2
(k1−∆n,ψ◦)

′Vψ◦(k1−∆n,ψ◦)

+ k′1Vψ◦∆n,ψ◦ −
1

2
k′1Vψ◦k1 − k′2Vψ◦∆n,ψ◦ +

1

2
k′2Vψ◦k2 + op(1) = op(1). (C.12)

Since, for every n, fn is continuous in (k1, k2) and K ×K is compact, then

sup
k1,k2∈K

fn(k1, k2)
p→ 0, as n→∞. (C.13)
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Suppose that the subset K contains a neighborhood of 0 (which guarantees that Φn(K) >

0 and then that ΦK
n is well defined) and let Ξn := {πh(K|x1:n) > 0}. Moreover, for a given

η > 0 define the event Ωn :=
{

supk1,k2∈K fn(k1, k2) ≤ η
}
. The TV distance ‖ · ‖TV between

two probability measures P and Q, with Lebesgue densities p and q respectively, can be
expressed as: ‖P − Q‖TV = 2

∫
(1 − p/q)+dQ. Therefore, by the Jensen inequality and

convexity of the functions (·)+,

1

2
EP‖ΦK

n − πhK(·|x1:n)‖TV 1Ωn∩Ξn = EP

∫
K

(
1− dΦK

n (k2)

dπhK(k2|x1:n)

)
+

dπhK(k2|x1:n)1Ωn∩Ξn

≤ EP

∫
K

∫
K

fn(k1, k2)dΦK
n (k1)dπhK(k2|x1:n)1Ωn∩Ξn

≤ EP sup
k1,k2∈K

fn(k1, k2)1Ωn∩Ξn (C.14)

that converges to zero by (C.13). By (C.14), it follows that (by remembering that ‖ · ‖TV is
upper bounded by 2)

EP‖πhK(·|x1:n) − ΦK
n ‖TV 1Ξn ≤ EP‖πhK(·|x1:n) − ΦK

n ‖TV 1Ωn∩Ξn + 2P (Ωc
n ∩ Ξn), (C.15)

where the second term is o(1) by (C.13). In the second step of the proof let Kn be a sequence
of closed balls in the parameter space of h centred at 0 with radii Mn →∞ and redefine Ξn

accordingly. For each n ≥ 1, (C.15) holds for these balls. Moreover, by (C.18) in Theorem
C.2 below: P (Ξn) → 1. Therefore, by the triangular inequality, the TV distance is upper
bounded by

EP‖πh(·|x1:n)− Φn‖TV ≤ EP‖πh(·|x1:n)− Φn‖TV 1Ξn + EP‖πh(·|x1:n)− Φn‖TV 1Ξcn

≤ EP‖πh(·|x1:n)− πhKn(·|x1:n)‖TV + EP‖πhKn(·|x1:n)− ΦKn
n ‖TV 1Ξn

+ EP‖ΦKn
n − Φn‖TV + 2P (Ξc

n)

≤ 2EP (πhKc
n
(·|x1:n)) + EP‖πhKn(·|x1:n)− ΦKn

n ‖TV 1Ξn + o(1)
p→ 0

since EP (πh(Kc
n|x1:n)) = o(1) by (C.18) and EP‖πhKn(·|x1:n) − ΦKn

n ‖TV 1Ξn = oP (1) by
(C.15) and (C.14), and where in the third line we have used the fact that: EP‖πh(·|x1:n)−
πhKn(·|x1:n)‖TV = 2EP (πhKc

n
(·|x1:n)) and ‖ΦKn

n − Φn‖TV = ‖ΦKc
n

n ‖TV = op(1) by Kleijn and
van der Vaart (2012, Lemma 5.2) since ∆n,ψ0 is uniformly tight.

�
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The next theorem establishes that the misspecified model satisfies a stochastic Local
Asymptotic Normality (LAN) expansion around the pseudo-true value ψ◦.

Theorem C.1 (Stochastic LAN). Assume that the matrix Vψ◦ is nonsingular and that As-
sumptions 5 (a)-(d), 6 (b), 3, 7, and 8 hold. Then for every compact set K ⊂ Rp,

sup
h∈K

∣∣∣∣log
p(x1:n|ψ◦ + h/

√
n)

p(x1:n|ψ◦)
− h′Vψ◦∆n,ψ◦ +

1

2
h′Vψ◦h

∣∣∣∣ p→ 0 (C.16)

where ψ◦ is as defined in (2.16), Vψ◦ := −EP [L̈n,ψ◦ ] and ∆n,ψ◦ := 1√
n

∑n
i=1 V

−1
ψ◦

L̇n,ψ◦(xi) is
bounded in probability.

Proof. See Appendix E.

�

The next theorem establishes that the posterior of ψ concentrates and puts all its mass
on Ψn := {‖ψ − ψ◦‖ ≤Mn/

√
n} as n→∞.

Theorem C.2 (Posterior Consistency). Assume that the stochastic LAN expansion (C.16)
holds for ψ◦ defined in (2.16). Moreover, let Assumptions 2 (a), 3 and 4 hold and assume
that there exists a constant C > 0 such that for any sequence Mn →∞,

P

(
sup
ψ∈Ψcn

1

n

n∑
i=1

(ln,ψ(xi)− ln,ψ◦(xi)) ≤ −
CM2

n

n

)
→ 1 (C.17)

as n→∞ where Ψn := {‖ψ − ψ◦‖ ≤Mn/
√
n}. Then,

π
(√

n‖ψ − ψ◦‖ > Mn

∣∣x1:n

) p→ 0 (C.18)

for any Mn →∞, as n→∞.

Proof. See Appendix E.

�

C.3 Proof of Lemma 2.1.

By Theorem 10 of Schennach (2007), which is valid under Assumptions 5 (a)-(c), 3, 7
(c), (e) and 8:

√
n(ψ̂ − ψ◦) = Op(1). Denote ĥ :=

√
n(ψ̂ − ψ◦) and h̃ := ∆n,ψ◦ . Because of

12



(C.16), we have:

n∑
i=1

(
ln,ψ◦+ĥ/

√
n − ln,ψ◦

)
(xi) =

1√
n

n∑
i=1

ĥ′L̇n,ψ◦(xi)−
1

2
ĥ′Vψ◦ĥ+ op(1) (C.19)

n∑
i=1

(
ln,ψ◦+h̃/

√
n − ln,ψ◦

)
(xi) =

1

2
√
n

n∑
i=1

h̃′L̇n,ψ◦(xi) + op(1). (C.20)

By definition of ψ̂ as the maximizer of
∑n

i=1 ln,ψ(xi), the left hand side of (C.19) is not
smaller than the left hand side of (C.20). It follows that the same relation holds for the right
hand sides of (C.19) and (C.20), and by taking their difference we obtain:

− 1

2

(
ĥ− 1√

n

n∑
i=1

V −1
ψ◦

L̇n,ψ◦(xi)

)′
Vψ◦

(
ĥ− 1√

n

n∑
i=1

V −1
ψ◦

L̇n,ψ◦(xi)

)
+ op(1) ≥ 0. (C.21)

Because −Vψ◦ is negative definite then

−1

2

(
ĥ− 1√

n

n∑
i=1

V −1
ψ◦

L̇n,ψ◦(xi)

)′
Vψ◦

(
ĥ− 1√

n

n∑
i=1

V −1
ψ◦

L̇n,ψ◦(xi)

)
≤ 0.

This and (C.21) imply that
∥∥∥V −1/2

ψ◦

(
ĥ− 1√

n

∑n
i=1 V

−1
ψ◦

L̇n,ψ◦(xi)
)∥∥∥ p→ 0 which in turn implies

that ∥∥∥∥∥
(
ĥ− 1√

n

n∑
i=1

V −1
ψ◦

L̇n,ψ◦(xi)

)∥∥∥∥∥ p→ 0

which establishes the result of the lemma.

�

D Proofs for Section 3.3

In this appendix we prove Theorems 3.1 and 3.2 and Corollary 3.1. The proofs of The-
orems 3.1 and 3.2 have already been stated in the Appendix of the paper but for easiness
of reading we give them also here. For the same reason we remind the notation already
introduced in the Appendix of the paper. Recall the notation ψ` = (θ`, v`) and the estimator
ψ̂` := (θ̂`, v̂`) denotes Schennach (2007)’ETEL estimator of ψ` in model M`:

ψ̂` := arg max
ψ`∈Ψ`

1

n

n∑
i=1

[
λ̂(ψ`)′gA(xi, ψ

`)− log
1

n

n∑
j=1

exp{λ̂(ψ`)′gA(xj, ψ
`)}

]
(D.1)
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where λ̂(ψ`) = arg minλ∈Rd
1
n

∑n
i=1

[
exp{λ′gA(xi, ψ

`)}
]
. Denote ĝA(ψ`) := 1

n

∑n
i=1 g

A(xi, ψ
`),

ĝA` := ĝA(ψ`),

L̂(ψ`) := exp{λ̂(ψ`)′ĝA(ψ`)}

[
1

n

n∑
i=1

exp{λ̂(ψ`)′gA(xi, ψ
`)}

]−1

and L(ψ`) = exp{λ◦(ψ`)′EP [gA(x, ψ`)]}
(
EP
[
exp{λ◦(ψ`)′gA(x, ψ`)}

])−1. Moreover, we use
the notation Σ` =

(
Γ′`∆

−1
` Γ`

)−1 where Γ` := EP
[

∂
∂ψ`′

gA(X,ψ`∗)
]
and ∆` := EP [gA(X,ψ`∗)g

A(X,ψ`∗)
′].

In the proofs, we omit measurability issues which can be dealt with in the usual manner by
replacing probabilities with outer probabilities.

D.1 Proof of Theorem 3.1

By (3.5) and Lemmas D.1 and D.2 below we obtain

P

(
max
6̀=j

logm(x1:n;M`) < logm(x1:n;Mj)

)
= P

(
max
`6=j

[
− n

2
ĝA
′

` ∆−1ĝA` + log π(ψ̂`|M`)

− (p` + dv`)

2
(log n− log(2π)) +

1

2
log |Σ`|

]
+
n

2
ĝA
′

j ∆−1ĝAj + op(1)

< log π(ψ̂j|Mj)−
(pj + dvj)

2
(log n− log(2π)) +

1

2
log |Σj|

)
. (D.2)

Remark that nĝA′j ∆−1ĝAj
d→ χ2

d−(pj+dvj ), ∀j, so that nĝA′j ∆−1ĝAj = Op(1). Suppose first that
(p` + dv` > pj + dvj), ∀` 6= j. Since −nĝA′` ∆−1ĝA` < 0 for every `, we lower bound (D.2) as

P

(
max
6̀=j

logm(x1:n;M`) < logm(x1:n;Mj)

)
≥ P

(n
2
ĝA
′

j ∆−1ĝAj + op(1)

< log n
[min 6̀=j(p` + dv`)− pj − dvj

2
−

min`6=j(p` + dv`)− pj − dvj)
2 log n

log(2π)

− log[max 6̀=j π(ψ̂`|M`)/π(ψ̂j|Mj)]

log n
− 1

2 log n

(
max
`6=j

log |Σ`| − log |Σj|
)])

= P
( n

2
ĝA
′

j ∆−1ĝAj + op(1)︸ ︷︷ ︸
=:In

< log n
[min` 6=j(p` + dv`)− pj − dvj

2
+Op((log n)−1)

]
︸ ︷︷ ︸

=:IIn

)
. (D.3)

Because In = Op(1) (and is asymptotically positive) and IIn is strictly positive as n→∞
(since (p` + dv`) > (pj + dvj), ∀` 6= j) and converges to +∞, then the probability converges
to 1. This proves one direction of the statement.
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To prove the second direction of the statement, suppose that limn→∞ P (max`6=j logm(x1:n;M`) <

logm(x1:n;Mj)) = 1 and consider the following upper bound (which follows from (D.2) and
the fact that nĝA′j ∆−1ĝAj > 0, ∀n):

P

(
max
6̀=j

logm(x1:n;M`) < logm(x1:n;Mj)

)
≤ P (logm(x1:n;M`) < logm(x1:n;Mj)) , ∀` 6= j

≤ P
(
− n

2
ĝA
′

` ∆−1ĝA` +op(1)+ log n
[(pj + dvj)− (p` + dv`)

2
+Op

(
1

log n

)]
< 0
)
, ∀` 6= j.

(D.4)

Because the probability in the first line of (D.4) converges to 1 as n→∞ then, necessarily,
the probability in the last line of (D.4) converges to 1 which is possible only if (pj + dvj) <

(p`+dv`) because log n
[

(pj+dvj )−(p`+dv` )

2

]
is the dominating term since−n

2
ĝA
′

` ∆−1ĝA` < 0 and it
remains bounded as n→∞. Since the first inequality in (D.4) holds ∀` 6= j then convergence
to 1 of the probability in the last line of (D.4) is possible only if (pj + dvj) < (p` + dv`),
∀` 6= j.

�

D.2 Proof of Theorem 3.2

We can write log p(x1:n|ψ`;M`) = −n log n+ n log L̂(ψ`). Then, we have:

P

(
logm(x1:n;Mj) > max

6̀=j
logm(x1:n;M`)

)
= P

(
n log L̂(ψj◦)+log π(ψj◦|Mj)−log π(ψj◦|x1:n,Mj)

> max
`6=j

[n log L̂(ψ`◦) + log π(ψ`◦|M`)− log π(ψ`◦|x1:n,M`)]
)

= P
(
n logL(ψj◦) + n log

L̂(ψj◦)

L(ψj◦)
+ Bj > max

` 6=j

[
n logL(ψ`◦) + B` + n log

L̂(ψ`◦)

L(ψ`◦)

])
(D.5)

where ∀`, B` := log π(ψ`◦|M`) − log π(ψ`◦|x1:n,M`) and B` = Op(1) under the assump-
tions of Theorem 2.2. By definition of dQ∗(ψ) in Section 2.3 we have that: logL(ψ`◦) =

EP [log dQ∗(ψ`◦)/dP ] = −EP [log dP/dQ∗(ψ`◦)] = −K(P ||Q∗(ψ`◦)). Remark thatEP [log(dP/dQ∗(ψ2
◦))] >

EP [log(dP/dQ∗(ψ1
◦))] means that the KL divergence between P and Q∗(ψ`◦), is smaller for

model M1 than for model M2, where Q∗(ψ`◦) minimizes the KL divergence between Q ∈ Pψ`◦
and P for ` ∈ {1, 2} (notice the inversion of the two probabilities).
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First, suppose that min` 6=j E
P
[
log
(
dP/dQ∗(ψ`◦)

)]
> EP [log (dP/dQ∗(ψj◦))]. By (D.5):

P

(
logm(x1:n;Mj) > max

6̀=j
logm(x1:n;M`)

)
≥

P

log
L̂(ψj◦)

L(ψj◦)
−max

` 6=j
log

L̂(ψ`◦)

L(ψ`◦)
+

1

n
(Bj −max

`6=j
B`) > max

` 6=j
logL(ψ`◦)− logL(ψj◦)︸ ︷︷ ︸

=:In

 . (D.6)

This probability converges to 1 because In = K(P ||Q∗(ψj◦))−min`6=jK(P ||Q∗(ψ`◦)) < 0 by
assumption, and

[
log L̂(ψ`)− logL(ψ`)

]
p→ 0, for every ψ` ∈ Ψ` and every ` ∈ {1, 2} by

Lemma D.3 below.
To prove the second direction of the statement, suppose that limn→∞ P (logm(x1:n;Mj) >

max 6̀=j logm(x1:n;M`)) = 1. By (D.5) it holds, ∀` 6= j

P

(
logm(x1:n;Mj) > max

6̀=j
logm(x1:n;M`)

)
≤

P
(

log
L̂(ψj◦)

L(ψj◦)
− log

L̂(ψ`◦)

L(ψ`◦)
+

1

n
(Bj − B`) > log

L(ψ`◦)

L(ψj◦)

)
. (D.7)

Convergence to 1 of the left hand side implies convergence to 1 of the right hand side which
is possible only if logL(ψ`◦) − logL(ψj◦) < 0. Since this is true for every model `, then this
implies that K(P ||Q∗(ψj◦)) < min 6̀=jK(P ||Q∗(ψ`◦)) which concludes the proof.

�

D.3 Proof of Corollary 3.1

We can write log p(x1:n|ψ`;M`) = −n log n + n log L̂(ψ`). Moreover, denote by Sm :=

{j; Mj does not satisfy Assumption 1} the set of indices of the models that are misspecified
and by Scm its complement in {1, 2, . . . , J}.
First, suppose that limn→∞ P (logm(x1:n;M1) > maxj 6=1 logm(x1:n;Mj)) = 1. Then, be-
cause maxj 6=1 logm(x1:n;Mj) ≥ maxj 6=1;j∈Scm logm(x1:n;Mj),

P

(
logm(x1:n;M1) > max

j 6=1
logm(x1:n;Mj)

)
≤ P

(
logm(x1:n;M1) > max

j 6=1; j∈Scm
logm(x1:n;Mj)

)
(D.8)
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which implies that the probability on the right hand side converges to 1 as n → ∞. Then
by Theorem 3.1, we necessarily have (p1 + dv1) < (pj + dvj), ∀j 6= 1, j ∈ Scm.

Next, suppose that (p1 + dv1) < (pj + dvj), ∀j 6= 1. Define the event

A :=

{
max

j 6=1; j∈Scm
logm(x1:n;Mj) > max

j 6=1;j∈Sm
logm(x1:n;Mj)

}
.

Because all the models Mj with j ∈ Scm have K(P ||Q∗(ψj)) = 0 (because they are correctly
specified) then limn→∞ P (A) = 1 by Theorem 3.2. By the Law of Total Probability we can
write

P

(
logm(x1:n;M1) > max

j 6=1
logm(x1:n;Mj)

)
= P

(
logm(x1:n;M1) >

max
j 6=1

logm(x1:n;Mj)

∣∣∣∣A)P (A) + P

(
logm(x1:n;M1) > max

j 6=1
logm(x1:n;Mj)

∣∣∣∣Ac)P (Ac)

≥ P

(
logm(x1:n;M1) > max

j 6=1
logm(x1:n;Mj)

∣∣∣∣A)P (A)

= P

(
logm(x1:n;M1) > max

j 6=1; j∈Scm
logm(x1:n;Mj)

)
P (A) (D.9)

which converges to 1 by Theorem 3.1.

�

D.4 Technical Lemmas

Lemma D.1. Let Assumptions 1, 5 and 6 hold for ψ`. Then,

log p(x1:n|ψ̂`;M`) = −n log n− n

2
ĝA
′

` ∆−1
` ĝA` + op (1)

= −n log n−
χ2
d−(p`+dv`

2
+ op (1) (D.10)

where χ2
d−(p`+dv` )

denotes a chi square distribution with (d− (p` + dv`)) degrees of freedom.

Proof. See Appendix F.

�

Lemma D.2. Let Assumptions 1, 2, 5, 6 and (2.15) hold for ψ`. Then,

− log π(ψ̂`|x1:n;M`) = −(p` + dv`)

2
[log n− log(2π)] +

1

2
log |Σ`|+ op(1).
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Proof. See Appendix F.

�

Lemma D.3. Let M` be a misspecified model (that is, a model that does not satisfy Assump-
tion 1) and let gA(x, ψ`) and ψ` be the corresponding moment functions and parameters.
Then, under Assumptions 5 (a)-(d), 3 and 7,

sup
ψ`∈Ψ`

∣∣∣∣∣log
exp{λ̂(ψ`)′ĝA(ψ`)}

1
n

∑n
i=1 exp{λ̂(ψ`)′gA(xi, ψ`)}

− log
exp{λ◦(ψ`)′EP [gA(x, ψ`)]}
EP [exp{λ◦(ψ`)′gA(x, ψ`)}]

∣∣∣∣∣ p→ 0.

Proof. See Appendix F.

�

E Proof of Theorems C.1 and C.2

E.1 Proof of Theorem C.1

For a vector z and a scalar δ > 0 we denote by B(z, δ) the closed ball centred on z with
radius δ. In this proof we use standard notation in empirical process theory: Pn := 1

n

∑n
i=1 δxi

where δx is the Dirac measure at x, and Gnf :=
√
n(Pnf − EPf) for every function f .

Moreover, we use Van der Vaart (2002, Theorem 6.16) which we report here for convenience
(in a slightly modified version):

Theorem E.1 (Theorem 6.16 in Van der Vaart (2002)). Let Fn be classes of measurable
functions (that may change with n) such that P (f̂n ∈ Fn) → 1 and such that: (i) the
bracketing integral J[ ](δn,Fn, L2(P )) → 0, for every δn ↓ 0, and (ii) its envelope functions
satisfy the Lindeberg condition. If EP [(f̂n − f0)2] → 0 in probability for some f0 ∈ L2(P )

then Gn(f̂n − f0)
p→ 0.

The maps x 7→ ln,ψ◦(x) and x 7→ ln,ψ◦+h/
√
n(x) are random functions, that is, measurable

functions that, for a fixed x, are functions of the observations x1, . . . , xn. By writing Pn[ln,ψ◦ ]

and EP [ln,ψ◦ ] we mean the (empirical and true) expectations of the function x 7→ ln,ψ◦(x)

with (x1, . . . , xn) kept fixed (and similarly for ln,ψ◦+h/√n(x)). Denote by l̇n,ψ◦(x) and l̈n,ψ◦(x)

the first and second order derivatives of the function ψ 7→ ln,ψ(x) evaluated at ψ◦ (where we
leave implicit the argument x).
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A second order Taylor expansion of ln,ψ◦+h/√n around h = 0, for a fixed x, gives

ln,ψ◦+h/
√
n = ln,ψ◦ +

h′√
n
l̇n,ψ◦ +

1

2n
h′l̈n,ψ◦h+Rem. (E.1)

By continuity of the map ψ 7→ ln,ψ (which is valid under Assumption 5 (c) and by the Birge’s
maximum theorem and strict convexity of Pn exp{λ′gA(x, ψ)}), the reminder term Rem is
of order op(‖h‖2/n) since l̈n,ψ◦ = L̈n,ψ◦ + op(1) and L̈n,ψ◦ = Op(1) under Assumptions 7 and
8 (see Schennach (2007, proof of Theorem 10)).

We consider the empirical process

Gn

(√
n(ln,ψ◦+h/

√
n − ln,ψ◦)− h′l̇n,ψ◦

)
:= n

(
Pn
(
ln,ψ◦+h/

√
n − ln,ψ◦

)
− EP

(
ln,ψ◦+h/

√
n − ln,ψ◦

))
− h′Gnl̇n,ψ◦ (E.2)

where, according to the definition of random functions given just above:

Pn[ln,ψ◦ ] =
1

n

n∑
i=1

λ̂(ψ◦)
′gA(xi, ψ◦)− logPn

[
eλ̂(ψ◦)′gA(xj ,ψ◦)

]
,

and EP [ln,ψ◦ ] = EP
[
λ̂(ψ◦)

′gA(X,ψ◦)
]
− logEn

[
eλ̂(ψ◦)′gA(xj ,ψ◦)

]
(and similarly for the other functions). The Markov’s inequality and (E.1) imply that

P
(∣∣∣Gn

(√
n(ln,ψ◦+h/

√
n − ln,ψ◦) − h′l̇n,ψ◦

)∣∣∣ > ε
)
≤ 1

ε
√
n
EP

∣∣∣∣Gn

(
1

2
h′L̈n,ψ◦h

)
+ op(‖h‖2)

∣∣∣∣
that converges to zero since L̈n,ψ◦ = Op(1) under Assumptions 7 and 8. This shows that
the sequence Gn

(√
n(ln,ψ◦+h/

√
n − ln,ψ◦)− h′l̇n,ψ◦

)
(seen as a stochastic process indexed by

h) converges in probability and then (marginally) in distribution to zero. Next, we have
to make this result uniform in h, that is, we have to show that the sequence of processes
Gn

(√
n(ln,ψ◦+h/

√
n − ln,ψ◦)− h′l̇n,ψ◦

)
converges weakly in the space l∞(h;h ∈ K) for a com-

pact set K ⊂ Rp. To show this we intend to apply Theorem E.1 given above. The proof
consists of three steps where each step verifies the assumptions of Theorem E.1.

In the first step, we verify (i) in Theorem E.1 and we define a suitable class of func-
tions that changes with the sample size n. Denote τn(λ̂, ψ) := Pn

[
eλ̂(ψ)′gA(x,ψ)

]
, τ(λ̂, ψ◦) :=

EP
[
eλ̂(ψ◦)′gA(X,ψ◦)

]
and consider the class of functions
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F1/
√
n :=

{
λ′1g

A(x, ψ)−λ′2gA(x, ψ◦)−log(τ1/τ2); τ1 ∈ B
(
τ(λ1, ψ),

1√
n

)
; λ1 ∈ B(λ◦(ψ), 1/

√
n);

τ2 ∈ B
(
τ(λ2, ψ◦),

1√
n

)
; λ2 ∈ B(λ◦(ψ◦), 1/

√
n); ‖ψ − ψ◦‖ ≤

1√
n

}
. (E.3)

By Lemma E.1, the bracketing integral J[ ](δn,
√
nF1/

√
n, L2(P )) of the class

√
nF1/

√
n con-

verges to zero as δn → 0. This satisfies assumption (i) of Theorem E.1.
The second step of the proof consists in finding an envelope function for the class

√
nF1/

√
n

and in showing that it satisfies the Lindeberg condition (this is assumption (ii) in Theorem
E.1). Lemma E.2 shows that F2,n(x) is an envelope function for the class F1/

√
n, where

F2,n(x) :=
1√
n

(
C1,nb(x) + C2,n‖gA(x, ψ◦)‖+

1

C4,n

C3,n

)
where b(x) is the function defined in Assumption 8 (c) and Ci,n > 0, i = 1, . . . , 4 are
sequences of positive and bounded constants that depend on ψ◦ and λ◦(ψ◦). It follows that
√
nF2,n(x) is an envelope function for the class

√
nF1/

√
n. The function

√
nF2,n(x) satisfies

the Lindeberg condition if:

nEP [F2,n(X)2] < ∞,

nEP
[
F2,n(X)21{

√
nF2,n(X) > ε

√
n}
]
→ 0, for every ε > 0.

Under Assumption 8 (c), nEP [F2,n(X)2] <∞ holds true. The second Lindeberg condition is
easily satisfied since nEP [F2,n(X)21{

√
nF2,n(X) > ε

√
n}] ≤ n

√
EP [F2,n(X)4]

√
P (F2,n > ε)

which converges to zero for every ε > 0 because P (F2,n > ε) → 0 as n → ∞ and, under
Assumption 8 (c), EP

[
F 4

2,n(X)
]

= O(1).
Finally, we verify the last requirement of Theorem E.1. Remark that under Assumption

8 (c)
EP [h′l̇n,ψ◦ ]

2 = EP [h′L̇n,ψ◦L̇
′
n,ψ◦h] + o(‖h‖) <∞ (E.4)

because EP tr(L̇n,ψ◦L̇
′
n,ψ◦

) can be shown to be bounded under Assumption 8 (c) by following
the last part of the proof of Schennach (2007, Theorem 10). Moreover, by a first order Taylor
expansion of ln,ψ◦+h/√n around h, by continuity of the map ψ 7→ ln,ψ, Assumption 6 (b) and

(E.4), we have: EP
[√

n
(
ln,ψ◦+h/

√
n − ln,ψ◦

)
− h′l̇n,ψ◦

]2

= o(1). Therefore, by Theorem E.1
we conclude that

Gn

(√
n(ln,ψ◦+h/

√
n − ln,ψ◦)− h′l̇n,ψ◦

)
p→ 0
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uniformly in h over a bounded set. Hence, by rewriting this as in (E.2) we see that

n∑
i=1

(ln,ψ◦+h/
√
n − ln,ψ◦)(xi)−Gnh

′l̇n,ψ◦ − nEP (ln,ψ◦+h/
√
n − ln,ψ◦) = op(1). (E.5)

By using (E.1) we obtain:

−Gnh
′l̇n,ψ◦−nEP (ln,ψ◦+h/

√
n−ln,ψ◦) = −

√
nPnh′l̇n,ψ◦+

√
nEPh′l̇n,ψ◦−nEP (ln,ψ◦+h/

√
n−ln,ψ◦)

= −
√
nPnh′l̇n,ψ◦ +

√
nEP [h′l̇n,ψ◦ ]−

√
nEP [h′l̇n,ψ◦ ]−

1

2
h′EP [l̈n,ψ◦ ]h+ op(1)

= −
√
nPnh′l̇n,ψ◦ −

1

2
h′EP [l̈n,ψ◦ ]h+ op(1) (E.6)

and by replacing this in (E.5) we get:

n∑
i=1

(ln,ψ◦+h/
√
n − ln,ψ◦)(xi)−

1√
n

n∑
i=1

h′l̇n,ψ◦(xi)−
1

2
h′EP [l̈n,ψ◦ ]h = op(1). (E.7)

Because the op(1) is uniform in h, this establishes (C.16) with Vψ◦ = −EP [L̈n,ψ◦ ] and ∆n,ψ◦ =
1√
n

∑n
i=1 V

−1
ψ◦

L̇n,ψ◦(xi) if Vψ◦ is nonsingular since l̈n,ψ◦ = L̈n,ψ◦+op(1) and l̇n,ψ◦ = L̇n,ψ◦+op(1).

�

Lemma E.1. Denote τn(λ̂, ψ) = Pn
[
eλ̂(ψ)′gA(x,ψ)

]
, τ(λ̂, ψ) = EP

[
eλ̂(ψ)′gA(X,ψ)

]
and consider

the class of functions F1/
√
n defined in (E.3) where λ◦ and ψ◦ are as defined in (2.16). Under

Assumptions 5 (a)-(d), 3, 7 (a), (c), and 8, the bracketing integral J[ ](δn,
√
nF1/

√
n, L2(P ))

of the class
√
nF1/

√
n converges to zero as δn → 0:

J[ ](δn,
√
nF1/

√
n, L2(P )) =

∫
δn

0

√
logN[ ](ε‖F‖P,2,

√
nF1/

√
n, L2(P ))dε→ 0 (E.8)

as δn → 0.

Proof. The class F1/
√
n is indexed by a compact subsetB⊗ := B

(
τ(λ1, ψ), 1√

n

)
×B(λ◦(ψ), 1√

n
)×

B
(
τ(λ2, ψ◦),

1√
n

)
× B(λ◦(ψ◦),

1√
n
) × B(ψ◦,

1√
n
) ⊂ Rp+dv+2d+2. Theorem 10 in Schennach

(2007), which is valid under Assumptions 5 (a)-(c), 7 (b)-(c) and 8 (a)-(c), shows that
τn(λ̂, ψ)

p→ τ(λ̂, ψ) and λ̂(ψ)
p→ λ◦(ψ) at the rate 1/

√
n, hence we can write τn(ψ) ∈

B(τ(λ̂(ψ), ψ), 1/
√
n) and λ̂(ψ) ∈ B(λ◦(ψ), 1/

√
n) with probability approaching 1. There-

21



fore, P
(
ln,ψ◦+h/

√
n − ln,ψ◦ ∈ F1/

√
n

)
→ 1. For every fa, fb ∈ F1/

√
n:

|fa(x)− fb(x)| =∣∣λ′1,agA(x, ψa)− λ′2,agA(x, ψ◦)− log(τ1,a/τ2,a)− λ′1,bgA(x, ψb) + λ′2,bg
A(x, ψ◦) + log(τ1,b/τ2,b)

∣∣
≤ ‖λ1,a‖ ‖gA(x, ψa)− gA(x, ψb)‖+ ‖λ1,a − λ1,b‖ ‖gA(x, ψb)‖+ ‖λ2,a − λ2,b‖ ‖gA(x, ψ◦)‖

− | log τ1,a − log τ1,b|+ | log τ2,a − log τ2,b|.

The following results hold by compactness of B⊗ and continuity of ψ 7→ gA(x, ψ) (under
Assumption 5 (c)): (i) ‖λ1,a‖ ≤ C for a generic constant C > 0 since |λ◦(ψ)| < ∞; (ii)
‖gA(x, ψa)−gA(x, ψb)‖ ≤ ‖∂gA(x, ψ)/∂ψ‖ ‖ψa−ψb‖ for some ψ on the line joining ψa and ψb
by the Mean Value theorem; (iii) ‖λ1,a − λ1,b‖ ≤ 2/

√
n because λ1,a, λ1,b ∈ B(λ◦(ψ), 1/

√
n);

(iv) | log τ1,a − log τ1,b| ≤ |τ1,a − τ1,b|/τ 1 for some τ 1 > 0 between τ1,a and τ1,b by the Mean
Value Theorem (and similarly for | log τ2,a − log τ2,b|). By using all these results:

|fa(x)− fb(x)| ≤
[
C‖∂gA(x, ψ)/∂ψ‖+ 2

(
‖gA(x, ψb)‖+ ‖gA(x, ψ◦)‖+ τ−1

1 + τ−1
2

)] 1√
n

≤
[
(C + 2/

√
n)b(x) + 2

(
‖gA(x, ψ◦)‖+ τ−1

1 + τ−1
2

)] 1√
n

=: F (x)
1√
n

where the second inequality follows by the Mean Value Theorem applied to ‖gA(x, ψ◦)‖ and
Assumption 8 (c) that implies that ‖∂gA(x, ψ)/∂ψ‖ ≤ b(x) for every ψ ∈ B(ψ◦, 1/

√
n).

Remark that under Assumptions 5 (d) and 8 (c):

EP [F (x)2] ≤ 2(C + 2/
√
n)2EP [b(X)2] + 16E‖gA(x, ψ◦)‖2 + 16(τ−1

1 + τ−1
2 ) <∞.

Therefore, by example 19.7 in Van der Vaart (1998), there exists a constant K independent
of ε and n such that the bracketing numbers of the class of functions F1/

√
n satisfy

N[ ]

(
ε

1√
n
‖F‖P,2,F1/

√
n, L2(P )

)
≤ K

(
diamB̃

ε√
n

)p+dv+2d+2

, 0 < ε <
1√
n

where L2(P ) denotes the L2 space of square integrable functions with respect to P and ‖·‖P,2
denotes the norm in this space. Remark that diamB̃ = 2/

√
n so that

(
diamB̃

ε√
n

)p+dv+2d+2

=

(2/ε)p+dv+2d+2. Then, the bracketing numbers of the class of functions
√
nF1/

√
n satisfy

N[ ](ε‖F‖P,2,
√
nF1/

√
n, L2(P )) ≤ K (2/ε)p+dv+2d+2 , 0 < ε <

1√
n
. (E.9)
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Let us compute the bracketing integral of the class
√
nF1/

√
n:

J[ ](δn,
√
nF1/

√
n, L2(P )) =

∫
δn

0

√
logN[ ](ε‖F‖P,2,

√
nF1/

√
n, L2(P ))dε

≤

∫
δn

0

√
logK + log (2/ε)p+dv+2d+2dε→ 0 as δn → 0

where the last inequality follows from (E.9) and proves the lemma.

�

Lemma E.2. Denote τn(λ̂, ψ) = Pn
[
eλ̂(ψ)′gA(x,ψ)

]
, τ(λ̂, ψ◦) = EP

[
eλ̂(ψ◦)′gA(X,ψ◦)

]
and con-

sider the class of functions F1/
√
n defined in (E.3) where λ◦ and ψ◦ are as defined in (2.16).

Under Assumptions 5 (a)-(c), 3, 7, and 8, the function

F2,n(x) :=
1√
n

(
C1,nb(x) + C2,n‖gA(x, ψ◦)‖+

1

C4,n

C3,n

)
.

is an envelope function for the class F1/
√
n, where b(x) is the function defined in Assumption

8 (c) and Ci,n > 0, i = 1, . . . , 4 are sequences of positive and bounded constants that depend
on ψ◦ and λ◦(ψ◦).

Proof. First, remark that every f ∈ F1/
√
n satisfies

|f(x)| ≤ sup
‖ψ−ψ◦‖≤n−1/2

sup
λ∈B(λ◦(ψ),1/

√
n)

‖λ‖‖gA(x, ψ)− gA(x, ψ◦)‖

+ sup
‖ψ−ψ◦‖≤n−1/2

sup
λ1∈B(λ◦(ψ),1/

√
n)

sup
λ2∈B(λ◦(ψ◦),1/

√
n)

‖λ1 − λ2‖‖gA(x, ψ◦)‖+
|τ1 − τ2|

τ2

(E.10)

for τ1 ∈ B(τ(λ1, ψ), 1/
√
n), τ2 ∈ B(τ(λ2, ψ◦), 1/

√
n), λ1 ∈ B(λ◦(ψ), 1/

√
n) and λ2 ∈

B(λ◦(ψ◦), 1/
√
n) since log τ2/τ1 ≤ (τ2 − τ1)/τ1. Next, we bound each of these terms sepa-

rately.
Let sup‖ψ−ψ◦‖≤n−1/2 supλ∈B(λ◦(ψ),1/

√
n) ‖λ‖ =: C1,n < ∞. Remark that by the implicit

function theorem for vector valued functions applied to the first order condition for λ◦, the
function ψ 7→ λ◦(ψ) is continuously differentiable in a neighborhood of ψ◦. Therefore, for
every λ1 ∈ B(λ◦(ψ), 1/

√
n), λ2 ∈ B(λ◦(ψ◦), 1/

√
n) with ψ ∈ B(ψ◦, 1/

√
n), by the triangular

inequality and the continuity of λ◦, there exists a N such that ∀n ≥ N

‖λ1 − λ2‖ ≤ ‖λ1 − λ◦(ψ)‖+ ‖λ◦(ψ)− λ◦(ψ◦)‖+ ‖λ2 − λ◦(ψ◦)‖
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≤ 2√
n

+

∥∥∥∥∂λ◦(ψ)

∂ψ′

∥∥∥∥ ‖ψ − ψ◦‖
≤ 1√

n

2 + sup
ψ∈B(ψ◦,

1√
n

)

∥∥∥∥∂λ◦(ψ)

∂ψ′

∥∥∥∥
 =:

1√
n
C2,n

where the second inequality follows from the Mean Value theorem with ψ being on the line
joining ψ and ψ◦. Remark that C2,n is a sequence of positive and bounded constants which
depends on ψ◦. By similar arguments we have that for every τ1 ∈ B

(
τ(λ1, ψ), 1√

n

)
and τ2 ∈

B
(
τ(λ2, ψ◦),

1√
n

)
with λ1 ∈ B(λ◦(ψ), 1/

√
n), λ2 ∈ B(λ◦(ψ◦), 1/

√
n) and ψ ∈ B(ψ◦, 1/

√
n):

|τ1 − τ2| ≤ |τ1 − τ(λ1, ψ)|+ |τ(λ1, ψ)− τ(λ2, ψ◦)|+ |τ2 − τ(λ2, ψ◦)|

≤ 2√
n

+ EP

[
eλ
′
1g
A(X,ψ)‖λ1‖

∥∥∥∥∥∂gA(X, ψ̃)

∂ψ

∥∥∥∥∥
]
‖ψ − ψ◦‖

+ EP [eλ̃
′gA(X,ψ◦)‖gA(X,ψ◦)‖]‖λ1 − λ2‖

≤ 2√
n

+
C1,n√
n
EP

[
sup

‖ψ−ψ◦‖≤1/
√
n

sup
λ1∈B(λ◦(ψ),1/

√
n)

eλ
′
1g
A(X,ψ)b(X)

]

+ EP

[
sup
t∈(0,1)

sup
ψ∈B(ψ◦,1/

√
n)

sup
λ1∈B(λ◦(ψ),1/

√
n)

sup
λ2∈B(λ◦(ψ◦),1/

√
n)

eλ̃
′gA(X,ψ◦)b(X)

]
C2,n√
n

=:
1√
n
C3,n

where ψ̃ is between ψ and ψ◦, λ̃ = tλ1 +(1− t)λ2, t ∈ (0, 1) and C3,n is a sequence of positive
and bounded constants by Assumption 8 (c) which depends on ψ◦ and λ◦. Therefore, by
this result and since log τ2/τ1 ≤ (τ2 − τ1)/τ1, τ1 is uniformly bounded away from zero over a
compact set: | log τ2/τ1| ≤ 1

C4,n
√
n
C3,n for some strictly positive constant 0 < C4,n <∞ that

lower bounds τ2 uniformly. Therefore, by replacing everything in (E.10) we get, ∀f ∈ F1/
√
n:

|f(x)| ≤ C1,n

∥∥∥∂gA(x, ψ̃)/∂ψ
∥∥∥ ‖ψ − ψ◦‖+

1√
n
C2,n‖gA(x, ψ◦)‖+

C3,n

C4,n

√
n

≤ 1√
n

(
C1,nb(x) + C2,n‖gA(x, ψ◦)‖+

1

C4,n

C3,n

)
=: F2,n(x)

where in the last inequality we have used Assumption 8 (c) that holds for every ψ in
B(ψ◦, 1/

√
n). Therefore, F2,n(x) is an envelope function for the class F1/

√
n and this con-

cludes the proof.
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�

E.2 Proof of Theorem C.2

Define the events An,1 :=
{

supψ∈Ψcn
1
n

∑n
i=1(ln,ψ(xi)− ln,ψ◦(xi)) ≤ −CM2

n/n
}
and

An,2 :=

{∫
Ψ

p(x1:n|ψ)

p(x1:n|ψ◦)
π(ψ)d(ψ) ≥ e−CM

2
n/2

}
.

By (C.17), P (Acn,1)→ 0 and by Lemma E.3 below, P (Acn,2)→ 0. Therefore,

EP
[
π
(√

n‖ψ − ψ∗‖ > Mn

∣∣x1:n

)]
≤ EP

[
π
(√

n‖ψ − ψ∗‖ > Mn

∣∣x1:n

)∣∣An,1 ∩ An,2]
× P (An,1 ∩ An,2) + o(1)

= EP

 ∫Ψcn

p(x1:n|ψ)
p(x1:n|ψ∗)π(ψ)dψ∫

Ψ

p(x1:n|ψ)
p(x1:n|ψ∗)π(ψ)dψ

∣∣∣∣∣∣An,1 ∩ An,2
P (An,1 ∩ An,2) + o(1)

≤ e−CM
2
nπ(Ψc

n)EP

(∫
Ψ

p(x1:n|ψ)

p(x1:n|ψ∗)
π(ψ)dψ

)−1
∣∣∣∣∣∣An,1 ∩ An,2

P (An,1 ∩ An,2) + o(1)

≤ e−CM
2
neCM

2
n/2π(Ψc

n)P (An,1 ∩ An,2) + o(1) = o(1) (E.11)

which proves the result of the theorem.

�

Lemma E.3. Assume that the stochastic LAN expansion (C.16) holds for ψ◦ defined in
(2.16) and that Assumptions 2 (a), 3, 4 and 8 are satisfied. Then,

P

(∫
Ψ

p(x1:n|ψ)

p(x1:n|ψ◦)
π(ψ)dψ < an

)
→ 0 (E.12)

for every sequence an → 0.

Proof. For a given M > 0 define C = {h ∈ Rdv+p : ‖h‖ ≤ M}. Denote by h 7→ Rem(h) the
remaining term in (C.16) and remark that suph∈CRem(h)

p→ 0 by (C.16) and compactness
of C. Therefore, for a sequence κn that converges to zero slowly enough, the event Bn :=

{suph∈CRem(h) ≤ κn} has probability P (Bn)→ 1. Let Kn →∞. By considering the local
parameter h =

√
n(ψ − ψ◦) and by denoting by πh both its prior distribution and prior
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Lebesgue density (under Assumption 2 (a)), we upper bound the probability in (E.12) as
follows:

P

(∫
Ψ

p(x1:n|ψ)

p(x1:n|ψ◦)
π(ψ)dψ < e−K

2
n

)
≤ P

(∫
C

p(x1:n|ψ◦ + h/
√
n)

p(x1:n|ψ◦)
πh(h)dh < e−K

2
n

)

= P

({∫
C

e
∑n
i=1(ln,ψ◦+h/

√
n−ln,ψ◦ )πh(h)dh < e−K

2
n

}
∩Bn

)
+ op(1). (E.13)

By replacing the LAN expansion (C.16) and by noting that for n sufficiently large, κn ≤ 1
2
K2
n

on Bn and suph∈C h
′Vψ◦h ≤ suph∈C ‖h‖2‖Vψ◦‖ ≤ M2‖Vψ◦‖ ≤ κn ≤ 1

2
K2
n (since M2‖Vψ◦‖ has

the same order as Rem(h) and where ‖Vψ◦‖ denotes the operator norm) we obtain:

P

(∫
Ψ

p(x1:n|ψ)

p(x1:n|ψ◦)
π(ψ)dψ < e−K

2
n

)
≤ P

(∫
C

eh
′Vψ◦∆n,ψ◦πh(h)dh < e−3K2

n/4

)
+ op(1)

= P

(∫
C

eh
′Vψ◦∆n,ψ◦πh(h|C)dh < e− log πh(C)e−3K2

n/4

)
+ op(1)

≤ P

(
exp

{∫
C

h′Vψ◦∆n,ψ◦π
h(h|C)dh

}
< eK

2
n/8e−3K2

n/4

)
+ op(1)

≤ P

(∫
C

h′Vψ◦∆n,ψ◦π
h(h|C)dh < −5K2

n/8

)
+ op(1)

≤ 64

25K4
n

EP

(∫
C

(h′Vψ◦∆n,ψ◦)
2
πh(h|C)dh

)
+ op(1)→ 0 (E.14)

where in the third line we have used that, for n large enough, − log πh(C) ≤ K2
n/8 and

the Jensen’s inequality. In the last line we have used the Markov’s inequality and then the
Jensen’s inequality. The result follows by (E.4) and Assumption 4.

�

F Proof of the technical Lemmas for the proof of Theo-

rems 3.1-3.2

For a vector z and a scalar δ > 0 we denote by B(z, δ) the closed ball centred on z

with radius δ. When the Mean Value theorem is applied to a vector of functions it must be
understood that it is applied componentwise.
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F.1 Proof of Lemma D.1

Let us consider the expression for the likelihood given in (2.6)-(2.9) and evaluated at ψ̂`:

log p(x1:n|ψ̂`;M`) = −n log n +
n∑
i=1

λ̂(ψ̂`)′gA(xi, ψ̂
`) − n log

1

n

n∑
j=1

eλ̂(ψ̂`)′gA(xj ,ψ̂
`). (F.1)

To shorten notation, in the rest of this proof we eliminate the superscripts and subscripts
and just write: g, ψ̂ instead of gA and ψ̂`.

Let λ̃ be on the line joining 0 and λ̂(ψ̂), then a second order Taylor expansion around
λ̂ = 0 gives

1

n

n∑
j=1

eλ̂(ψ̂)′g(xj ,ψ̂) = 1 +
1

n

n∑
i=1

λ̂(ψ̂)′g
(
xi, ψ̂

)
+

1

2
λ̂(ψ̂)′

1

n

n∑
j=1

eλ̃
′g(xj ,ψ̂)g

(
xj, ψ̂

)
g
(
xj, ψ̂

)′
λ̂(ψ̂). (F.2)

Under Assumption 5 and because λ̃ = Op(n−1/2) = op(n
−ζ) for any ζ < 1/2 (since by

Newey and Smith (2004, Lemma A.2) λ̂(ψ̂) = Op(n−1/2) = op(n
−ζ) for any ζ < 1/2 and λ̃

is between 0 and λ̂(ψ̂)) we can apply Newey and Smith (2004, Lemma A.1) that implies:
max1≤i≤n |λ̃′g(xi, ψ̂)| p→ 0. Therefore, max1≤i≤n

∣∣∣−eλ̃′g(xi,ψ̂) + 1
∣∣∣ p→ 0 which in turn implies:

1

n

n∑
j=1

eλ̃
′g(xj ,ψ̂)g

(
xj, ψ̂

)
g
(
xj, ψ̂

)′ p→ ∆. (F.3)

By replacing this in (F.2) we obtain:

1

n

n∑
j=1

eλ̂(ψ̂)′g(xj ,ψ̂) = 1 +
1

n

n∑
i=1

λ̂(ψ̂)′g
(
xi, ψ̂

)
+

1

2
λ̂(ψ̂)′∆λ̂(ψ̂) + op

(
n−1
)
. (F.4)

We now use the first order Taylor expansion of the function log(u) around u = 1: log(u) =

u− 1 + o(|u− 1|), and plug (F.4) in it to obtain:

log

(
1

n

n∑
j=1

eλ̂(ψ̂)′g(xj ,ψ̂)

)
=

1

n

n∑
i=1

λ̂(ψ̂)′g
(
xi, ψ̂

)
+

1

2
λ̂(ψ̂)′∆λ̂(ψ̂) + op

(
n−1
)

+ o

(∣∣∣∣∣ 1n
n∑
j=1

eλ̂(ψ̂)′g(xj ,ψ̂) − 1

∣∣∣∣∣
)
. (F.5)
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In order to simplify (F.5) further and to find the rate of the last term in the right hand side
of (F.5) we approximate ĝ(ψ) := 1

n

∑n
i=1 g(xi, ψ) as follows:

ĝ(ψ̂) =ĝ(ψ∗) +
1

n

n∑
i=1

∂g(xi, ψ∗)

∂ψ′
(ψ̂ − ψ∗) + o(‖(ψ̂ − ψ∗)‖)

=ĝ(ψ∗) + Γ`(ψ̂ − ψ∗) + op(n
−1/2) (F.6)

=ĝ(ψ∗)− Γ`Hĝ(ψ∗) + op(n
−1/2) (F.7)

=−∆`λ̂(ψ̂) + op(n
−1/2) (F.8)

where to get (F.7) we have used the fact that, under Assumptions 1, 5 and 6:
√
n
(
ψ̂ − ψ∗

)
=

−H
√
nĝ(ψ∗) + op(1) with H := (Γ′`∆

−1
` Γ`)

−1Γ′`∆
−1
` (see Schennach (2007, Proof of Theorem

3)) and to get (F.6) we have used the fact that ‖ 1
n

∑n
i=1

∂g(xi,ψ∗)
∂ψ′

− Γ`‖ = Op(n−1/2) under
Assumption 6 (b) by the Markov’s inequality. Finally, (F.8) is obtained by using the fact
that I − Γ`H = ∆`Φ` where Φ` := ∆−1

` −∆−1
` Γ`Σ`Γ

′
`∆
−1
` and Σ` = (Γ′`∆

−1
` Γ`)

−1, and that,
under Assumptions 1, 5 and 6,

√
nλ̂(ψ̂) = −Φ`

√
nĝ(ψ∗) + op(1) (see Schennach (2007, Proof

of Theorem 3)). By substituting this result in (F.4) we obtain:∣∣∣∣∣ 1n
n∑
j=1

eλ̂(ψ̂)′g(xj ,ψ̂) − 1

∣∣∣∣∣ =

∣∣∣∣−λ̂(ψ̂)∆`λ̂(ψ̂) +
1

2
λ̂(ψ̂)′∆`λ̂(ψ̂)

∣∣∣∣+ op(n
−1)

=

∣∣∣∣−1

2
λ̂(ψ̂)′∆`λ̂(ψ̂)

∣∣∣∣+ op(n
−1)

which is Op(n−1) since
∥∥∥λ̂(ψ̂)

∥∥∥2

= Op(n−1). By replacing this result and (F.8) in (F.5) we
obtain:

log

(
1

n

n∑
j=1

eλ̂(ψ̂)′g(xj ,ψ̂)

)
= λ̂(ψ̂)′ĝ(ψ̂) +

1

2
ĝ(ψ̂)′∆−1

` ĝ(ψ̂) + op
(
n−1
)
. (F.9)

Next, we replace (F.9) in (F.1) to get:

log p(x1:n|ψ̂;M`) = −n log n+
n∑
i=1

λ̂(ψ̂)′g(xi, ψ̂)−
n∑
i=1

λ̂(ψ̂)′g
(
xi, ψ̂

)
− n1

2
ĝ(ψ̂)′∆−1

` ĝ(ψ̂) + op (1)

= −n log n−
χ2
d−(p`+dv` )

2
+ op (1) (F.10)
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where the last equality follows from standard arguments as in Hansen (1982) that show that
nĝ(ψ̂)′∆−1

` ĝ(ψ̂)→d χ2
d−(p`+dv` )

.

�

F.2 Proof of Lemma D.2

Result (2.15) and consistency of the ETEL estimator ψ̂` (which is guaranteed under
Assumptions 1, 5 and 6, see Schennach (2007, Theorem 3)) implies that the posterior
π(ψ`|x1:n;M`) of ψ` converges in total variation towards a Nψ̂`,n−1Σ`

distribution, where
Σ` = (Γ′`∆

−1Γ`)
−1. Hence, the negative logarithm of the posterior density evaluated at ψ̂` is

− log π(ψ̂`|x1:n;M`) = −(p` + d`)

2
[log n− log(2π)] +

1

2
log |Σ`|+ op(1).

�

F.3 Proof of Lemma D.3

In the proof we eliminate the superscript ` for simplicity. The proof proceeds in two
steps. In the first step we show uniform convergence of ĝA(ψ) and λ̂(ψ). By the uniform
strong Law of Large Numbers, which is valid under Assumptions 5 (a)-(b) and 7 (a) (see
e.g. Newey and McFadden (1994, Lemma 2.4)), it holds:

sup
ψ∈Ψ

∥∥ĝA(ψ)− EP [gA(x, ψ)]
∥∥ p→ 0. (F.11)

Let λ(ψ) = arg minλ∈Λ(ψ)
1
n

∑n
i=1 exp{λ′gA(xi, ψ)}. Schennach (2007, page 668) shows that

supψ∈Ψ ‖λ(ψ)−λ◦(ψ)‖ p→ 0 (under Assumptions 5 (a)-(b) and 7). Moreover, if λ(ψ) lies in the
interior of Λ(ψ) then the minimum of 1

n

∑n
i=1 exp{λ′gA(xi, ψ)} is unique by strict convexity of

the latter function. As λ(ψ)
p→ λ◦(ψ) uniformly in ψ ∈ Ψ and λ◦(ψ) ∈ int(Λ(ψ)) by Assump-

tion 7 (b), it follows that λ̂(ψ)− λ(ψ)
p→ 0 as n→∞. By continuity of both λ(ψ) and λ̂(ψ)

in (ψ) (due to the Birge’s maximum theorem and strict convexity of 1
n

∑n
i=1 exp{λ′gA(xi, ψ)}

in λ) and compactness of Ψ we conclude that

sup
ψ∈Ψ
‖λ̂(ψ)− λ◦(ψ)‖ p→ 0. (F.12)
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In the second step of the proof, we use the results of the first step to show the result of the
lemma. By the triangular inequality and the Cauchy-Schwartz inequality

sup
ψ∈Ψ

∣∣∣∣∣log
exp{λ̂(ψ)′ĝA(ψ)}

1
n

∑n
i=1 exp{λ̂(ψ)′gA(xi, ψ)}

− log
exp{λ◦(ψ)′EP [gA(x, ψ)]}
EP [exp{λ◦(ψ)′gA(x, ψ)}]

∣∣∣∣∣
≤ sup

ψ∈Ψ
‖λ̂(ψ)− λ(ψ)‖ sup

ψ∈Ψ
‖ĝA(ψ)‖

+ sup
ψ∈Ψ
‖λ(ψ)‖ sup

ψ∈Ψ
‖ĝA(ψ)− EP [gA(x, ψ)]‖

+ sup
ψ∈Ψ
‖λ(ψ)− λ◦(ψ)‖ sup

ψ∈Ψ
‖EP [gA(x, ψ)]‖

+ sup
ψ∈Ψ

∣∣∣∣∣log
1

n

n∑
i=1

exp{λ̂(ψ)′gA(xi, ψ)} − logEP
[
exp{λ◦(ψ)′gA(x, ψ)}

]∣∣∣∣∣
=: A1 +A2 +A3 +A4. (F.13)

By continuity of ψ 7→ λ(ψ) and compactness of Ψ and of Λ(ψ) for all ψ ∈ Ψ: supψ∈Ψ ‖λ(ψ)‖ <
∞. By Assumption 7 (b): supψ∈Ψ ‖EP [gA(x, ψ)]‖ ≤ EP [M(x)] <∞ and supψ∈Ψ ‖ĝA(ψ)‖ <
∞ (by using (F.11)). Therefore, Ai

p→ 0 for i = 1, 2, 3 by (F.11) and (F.12).
In order to show the convergence to zero of A4 remark that because log(a) ≤ a− 1 for every
a > 0, then,

A4 ≤ sup
ψ∈Ψ

∣∣∣ 1
n

∑n
i=1 exp{λ̂(ψ)′gA(xi, ψ)} − EP

[
exp{λ◦(ψ)′gA(X,ψ)}

]∣∣∣
EP [exp{λ◦(ψ)′gA(X,ψ)}]

which converges to zero by the result in Lemma F.1 below.

�

Lemma F.1. Let M` be a misspecified model (that is, a model that does not satisfy Assump-
tion 1) and let gA(x, ψ`) and ψ` be the corresponding moment functions and parameters.
Then, under Assumptions 5 (a)-(d), 3, and 7:

sup
ψ∈Ψ

∣∣∣∣∣ 1n
n∑
i=1

exp{λ̂(ψ)′gA(xi, ψ)} − EP
[
exp{λ◦(ψ)′gA(X,ψ)}

]∣∣∣∣∣ p→ 0.

Proof. In this proof, let An denote the following event: An := {supψ∈Ψ ‖λ̂(ψ)−λ◦(ψ)‖ ≤ δn},
for a δn > 0 converging to zero as n→∞, and let B(λ◦, δn) be the closed ball around λ◦(ψ)

with radius δn. Then, under Assumption 7 (b) there exists an N > 0 such that ∀n > N :
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λ̂(ψ) ∈ Λ(ψ) on the event An.
Next, we prove the intermediate result

sup
ψ∈Ψ,λ∈Λ(ψ)

∣∣∣∣∣ 1n
n∑
i=1

eλ
′gA(xi,ψ) − EP

[
eλ
′gA(X,ψ)

]∣∣∣∣∣ a.s.→ 0. (F.14)

Consider the class of functions (on X ) F :=
{

exp{λ′gA(·, ψ)};λ ∈ Λ(ψ), ψ ∈ Ψ
}
. Since: (I)

the function (λ, ψ) 7→ exp{λ′gA(x, ψ)} is continuous for P -almost all x (under Assumption
5 (c)); (II) Ψ is compact and Λ(ψ) is compact for every ψ ∈ Ψ (by Assumptions 5 (b) and
7 (b)); (III) the envelope of F , supψ∈Ψ,λ∈Λ(ψ) exp{λ′gA(x, ψ)} is in L1(P ) (by Assumption 7
(c)), then (F.14) holds (see van de Geer (2010, Lemma 3.10, page 38)).

With this result, and the fact that P (Acn) = o(1) by (F.12), we are now ready to show the
result of the lemma. Let h(λ̂, ψ) := EP

X

[
eλ̂(ψ)′gA(X,ψ)

]
, where EP

X [·] denotes the expectation

taken with respect to the distribution of X only (so, we do not integrate out λ̂). Moreover,
let η > 0 and denote by Bn the event Bn := {supψ∈Ψ

∣∣∣h(λ̂, ψ)− EP
[
eλ◦(ψ)′gA(X,ψ)

]∣∣∣ ≤ η/2}.
To upper bound P (Bc

n) we use the Markov’s inequality and the Mean value theorem applied
to the function h(·, ψ) which is defined on B(λ◦(ψ), δn) on the event An:

P (Bc
n) = P (Bc

n|An)P (An) + P (Bc
n|Acn)P (Acn)

≤ 2

η
EP

(
sup
ψ∈Ψ

∣∣∣EP
X

[
e{λ̃(ψ)′gA(X,ψ)}gA(X,ψ)′

]
(λ̂(ψ)− λ◦(ψ))

∣∣∣∣∣∣∣An)P (An) + P (Acn)

=
2δn
η

(EP

((
sup
ψ∈Ψ

∥∥∥EP
X

[
e{λ̃(ψ)′gA(X,ψ)}gA(X,ψ)′

]∥∥∥)2

1An

)
)1/2 + o(1) (F.15)

where λ̃(ψ) is on the line joining λ̂(ψ) and λ◦(ψ) and 1An is the indicator function of the
event An. By applying the Cauchy-Schwartz inequality we get

EP

(
sup
ψ∈Ψ

∥∥∥EP
X

[
eλ̃(ψ)′gA(X,ψ)gA(X,ψ)

]∥∥∥2

1An

)
≤ EP

(
sup
ψ∈Ψ

EP
X

[
e2λ̃(ψ)′gA(X,ψ)

]
1An

)
sup
ψ∈Ψ

EP
∥∥gA(X,ψ)

∥∥2
. (F.16)

The first term in the product in the right hand side is bounded by uniform convergence of
λ̃(ψ) towards λ◦(ψ) on An, uniform continuity of the function ψ 7→ eλ

′gA(ψ) on B(λ◦(ψ), 2δn)×
Ψ, Assumption 7 (c) and by the Dominated Convergence theorem. The second term in the
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product is bounded by Assumption 5 (d) because

sup
ψ∈Ψ

EP
X

∥∥gA(X,ψ)
∥∥2 ≤ EP

[
sup
ψ∈Ψ

∥∥gA(X,ψ)
∥∥2
]
≤ EP

[
sup
ψ∈Ψ

∥∥gA(X,ψ)
∥∥α] , ∀α > 2.

Therefore, (F.15) and (F.16) and the fact that δn → 0 show that P (Bc
n) = o(1).

Next,

P

(
sup
ψ∈Ψ

∣∣∣∣∣ 1n
n∑
i=1

eλ̂(ψ)′gA(xi,ψ) − EP
[
eλ◦(ψ)′gA(X,ψ)

]∣∣∣∣∣ > η

)
≤

P

(
sup
ψ∈Ψ

∣∣∣∣∣ 1n
n∑
i=1

eλ̂(ψ)′gA(xi,ψ) − h(λ̂, ψ)

∣∣∣∣∣ > η − sup
ψ∈Ψ

∣∣∣h(λ̂, ψ)− EP
[
eλ̃(ψ)′gA(X,ψ)

]∣∣∣)

≤ P

(
sup
ψ∈Ψ

∣∣∣∣∣ 1n
n∑
i=1

eλ̂(ψ)′gA(xi,ψ) − h(λ̂, ψ)

∣∣∣∣∣ > η − η

2

)
P (Bn) + P (Bc

n)

≤ P

(
sup
ψ∈Ψ

∣∣∣∣∣ 1n
n∑
i=1

eλ̂(ψ)′gA(xi,ψ) − h(λ̂, ψ)

∣∣∣∣∣ > η

2

∣∣∣∣∣An
)
P (An)P (Bn) + P (Acn)P (Bn) + P (Bc

n)

≤ P

(
sup

ψ∈Ψ,λ∈Λ(ψ)

∣∣∣∣∣ 1n
n∑
i=1

eλ
′gA(xi,ψ) − EP

[
eλ
′gA(X,ψ)

]∣∣∣∣∣ > η

2

)
+ o(1) (F.17)

where to get the last line we have used the fact that the probability is conditional on the
event An and P (Acn) = o(1). Finally, this probability goes to zero by (F.14).

�
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